Abstract
A new approach to the study of the Jaynes–Cummings sum, which determines the atomic inversion in quantum model of a single two-level atom interacting with a single mode of the quantized radiation field, based on the number theory theorems on approximation of trigonometric sums is presented.
Similar content being viewed by others
References
Bodendorf, C.T., Antesberger, G., Kim, M.S., Walther, H.: Quantum-state reconstruction in the one-atom maser. Phys. Rev. A 57(2), 1371–1378 (1998)
Chumakov, S.M., Kozierowski, M., Sanchez-Mondragon, J.J.: Analytical approach to the photon statistics in the thermal Jaynes–Cummings model with an initially unexcited atom. Phys. Rev. A 48(6), 4594–4597 (1993)
Fleischhauer, M., Schleich, W.P.: Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes–Cummings model. Phys. Rev. A 47(3), 4258–4269 (1993)
Gautschi, W.: The Hardy-Littlewood function: an exercise in slowly convergent series. J. Comput. Appl. Math. 179, 249–254 (2005)
Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theory with application to the beam maser. Proc. IEEE 51, 89–109 (1963)
Hardy, G.H., Littlewood, J.E.: The trigonometrical series associated with the elliptic θ-functions. Acta Math. 37, 193–239 (1914)
Hardy, G.H., Littlewood, J.E.: Contributions to the theory of Riemann Zeta-Function and the theory of the distribution of primes. Acta Math. 41, 119–196 (1918)
Karatsuba, A.A.: Approximation of exponential sums by shorter ones. Proc. Indian Acad. Sci. (Math. Sci.) 97(1–3), 167–178 (1987)
Karatsuba, A.A., Korolev, M.A.: The approximation of a trigonometric sum by a shorter one. Dokl. Ross. Akad. Nauk 412(2), 159–161 (2007)
Karatsuba, A.A., Korolev, M.A.: The theorem on the approximation of a trigonometric sum by a shorter one. Izv. Ross. Akad. Nauk, Ser. Mat. 71(2), 123–150 (2007)
Karatsuba, A.A., Voronin, S.M.: The Riemann Zeta-Function. W. de Gruyter, Verlag, Berlin (1992)
Karatsuba, E.A.: Approximation of sums of oscillating summands in certain physical problems. J. Math. Phys. 45(11), 4310–4321 (2004)
Karatsuba, E.A.: Approximation of exponential sums in the problem on the oscillator motion caused by pushes. Chebyshev’s Transactions 6, 3(15), 205–224 (2005)
Karatsuba, E.A.: The commutator function of the free Dirac field in the discrete representation and its zeros. Pacific Journal of Applied Mathematics (to appear)
Knight, P.L., Radmore, P.M.: Quantum origin of dephasing and revivals in the coherent-state Jaynes–Cummings model. Phys. Rev. A 26(1), 676–679 (1982)
Narozhny, N.B., Sanchez-Mondragon, J.J., Eberly, J.H.: Coherence versus incoherence: collapse and revival in a simple quantum model. Phys. Rev. A 23(1), 236–247 (1981)
Meekhof, D.M., Monroe, C., King, B.E., Itano, W.M., Wineland, D.J.: Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996)
Van der Corput, J.G.: Zahlentheoretische Abschätzungen. Math. Ann. 84, 53–79 (1921)
Van der Corput, J.G.: Über summen die mit den elliptischen θ-Funktionen zusammenhängen. Math. Ann. 87, 66–77 (1922)
Vinogradov, I.M.: On the average value of the number of classes of purely root form of the negative determinant. Communications of Kharkhov Math. Soc. 16, 10–38 (1917)
Vinogradov, I.M.: The Method of Trigonometrical Sums in the Theory of Numbers. Dover, Mineola, NY (2004)
Wallentowitz, S., Walmsley, I.A., Waxer, L.J., Richter, Th.: Rotationally induced collapse and revivals of molecular vibrational wavepackets: model for environment-induced decoherence. J. Phys. B 35, 1967–1984 (2002)
Yoo, H.-I., Sanchez-Mondragon, J.J., Eberly, J.H.: Non-linear dynamics of the fermion-boson model: interference between revivals and the transition to irregularity. J. Phys. A 14, 1383–1397 (1981)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karatsuba, E.A. On an approach to the study of the Jaynes–Cummings sum in quantum optics. Numer Algor 45, 127–137 (2007). https://doi.org/10.1007/s11075-007-9070-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-007-9070-x
Keywords
- Jaynes–Cummings model
- Atomic inversion
- Coherent state
- Thermal state
- Trigonometric sums
- Approximation
- Van der Corput lemma
- Theorem on the approximation of a trigonometric sum by a shorter one (ATS)