Skip to main content
Log in

On an approach to the study of the Jaynes–Cummings sum in quantum optics

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new approach to the study of the Jaynes–Cummings sum, which determines the atomic inversion in quantum model of a single two-level atom interacting with a single mode of the quantized radiation field, based on the number theory theorems on approximation of trigonometric sums is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodendorf, C.T., Antesberger, G., Kim, M.S., Walther, H.: Quantum-state reconstruction in the one-atom maser. Phys. Rev. A 57(2), 1371–1378 (1998)

    Article  Google Scholar 

  2. Chumakov, S.M., Kozierowski, M., Sanchez-Mondragon, J.J.: Analytical approach to the photon statistics in the thermal Jaynes–Cummings model with an initially unexcited atom. Phys. Rev. A 48(6), 4594–4597 (1993)

    Article  Google Scholar 

  3. Fleischhauer, M., Schleich, W.P.: Revivals made simple: Poisson summation formula as a key to the revivals in the Jaynes–Cummings model. Phys. Rev. A 47(3), 4258–4269 (1993)

    Article  Google Scholar 

  4. Gautschi, W.: The Hardy-Littlewood function: an exercise in slowly convergent series. J. Comput. Appl. Math. 179, 249–254 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theory with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  6. Hardy, G.H., Littlewood, J.E.: The trigonometrical series associated with the elliptic θ-functions. Acta Math. 37, 193–239 (1914)

    Article  MathSciNet  Google Scholar 

  7. Hardy, G.H., Littlewood, J.E.: Contributions to the theory of Riemann Zeta-Function and the theory of the distribution of primes. Acta Math. 41, 119–196 (1918)

    Article  MathSciNet  Google Scholar 

  8. Karatsuba, A.A.: Approximation of exponential sums by shorter ones. Proc. Indian Acad. Sci. (Math. Sci.) 97(1–3), 167–178 (1987)

    Article  MathSciNet  Google Scholar 

  9. Karatsuba, A.A., Korolev, M.A.: The approximation of a trigonometric sum by a shorter one. Dokl. Ross. Akad. Nauk 412(2), 159–161 (2007)

    MathSciNet  Google Scholar 

  10. Karatsuba, A.A., Korolev, M.A.: The theorem on the approximation of a trigonometric sum by a shorter one. Izv. Ross. Akad. Nauk, Ser. Mat. 71(2), 123–150 (2007)

    MathSciNet  Google Scholar 

  11. Karatsuba, A.A., Voronin, S.M.: The Riemann Zeta-Function. W. de Gruyter, Verlag, Berlin (1992)

    MATH  Google Scholar 

  12. Karatsuba, E.A.: Approximation of sums of oscillating summands in certain physical problems. J. Math. Phys. 45(11), 4310–4321 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karatsuba, E.A.: Approximation of exponential sums in the problem on the oscillator motion caused by pushes. Chebyshev’s Transactions 6, 3(15), 205–224 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Karatsuba, E.A.: The commutator function of the free Dirac field in the discrete representation and its zeros. Pacific Journal of Applied Mathematics (to appear)

  15. Knight, P.L., Radmore, P.M.: Quantum origin of dephasing and revivals in the coherent-state Jaynes–Cummings model. Phys. Rev. A 26(1), 676–679 (1982)

    Article  Google Scholar 

  16. Narozhny, N.B., Sanchez-Mondragon, J.J., Eberly, J.H.: Coherence versus incoherence: collapse and revival in a simple quantum model. Phys. Rev. A 23(1), 236–247 (1981)

    Article  MathSciNet  Google Scholar 

  17. Meekhof, D.M., Monroe, C., King, B.E., Itano, W.M., Wineland, D.J.: Generation of nonclassical motional states of a trapped atom. Phys. Rev. Lett. 76, 1796–1799 (1996)

    Article  Google Scholar 

  18. Van der Corput, J.G.: Zahlentheoretische Abschätzungen. Math. Ann. 84, 53–79 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  19. Van der Corput, J.G.: Über summen die mit den elliptischen θ-Funktionen zusammenhängen. Math. Ann. 87, 66–77 (1922)

    Article  MathSciNet  Google Scholar 

  20. Vinogradov, I.M.: On the average value of the number of classes of purely root form of the negative determinant. Communications of Kharkhov Math. Soc. 16, 10–38 (1917)

    Google Scholar 

  21. Vinogradov, I.M.: The Method of Trigonometrical Sums in the Theory of Numbers. Dover, Mineola, NY (2004)

  22. Wallentowitz, S., Walmsley, I.A., Waxer, L.J., Richter, Th.: Rotationally induced collapse and revivals of molecular vibrational wavepackets: model for environment-induced decoherence. J. Phys. B 35, 1967–1984 (2002)

    Article  Google Scholar 

  23. Yoo, H.-I., Sanchez-Mondragon, J.J., Eberly, J.H.: Non-linear dynamics of the fermion-boson model: interference between revivals and the transition to irregularity. J. Phys. A 14, 1383–1397 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekatherina A. Karatsuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karatsuba, E.A. On an approach to the study of the Jaynes–Cummings sum in quantum optics. Numer Algor 45, 127–137 (2007). https://doi.org/10.1007/s11075-007-9070-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9070-x

Keywords

Mathematics Subject Classifications (2000)

Navigation