Skip to main content
Log in

An adaptive spectral least-squares scheme for the Burgers equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A least-squares spectral collocation method for the one-dimensional inviscid Burgers equation is proposed. This model problem shows the stability and high accuracy of these schemes for nonlinear hyperbolic scalar equations. Here we make use of a least-squares spectral approach which was already used in an earlier paper for discontinuous and singular perturbation problems (Heinrichs, J. Comput. Appl. Math. 157:329–345, 2003). The domain is decomposed in subintervals where continuity is enforced at the interfaces. Equal order polynomials are used on all subdomains. For the spectral collocation scheme Chebyshev polynomials are employed which allow the efficient implementation with Fast Fourier Transforms (FFTs). The collocation conditions and the interface conditions lead to an overdetermined system which can be efficiently solved by least-squares. The solution technique will only involve symmetric positive definite linear systems. The scheme exhibits exponential convergence where the exact solution is smooth. In parts of the domain where the solution contains discontinuities (shocks) the spectral solution displays a Gibbs-like behavior. Here this is overcome by some suitable exponential filtering at each time level. Here we observe that by over-collocation the results remain stable also for increasing filter parameters and also without filtering. Furthermore by an adaptive grid refinement we were able to locate the precise position of the discontinuity. Numerical simulations confirm the high accuracy of our spectral least-squares scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer Series in Computational Physics. Springer, Berlin Heidelberg New York (1989)

    Google Scholar 

  2. De Maerschalck, B., Gerritsma, M.I.: The use of Chebyshev polynomials in the space-time least-squares spectral element method. Numer. Algorithms 38, 173–196 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. De Maerschalck, B., Gerritsma, M.I.: Higher-order Gauss–Lobatto integration for non-linear hyperbolic equations. J. Sci. Comput. 27(1–3), 201–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Eisen, H., Heinrichs, W.: A new method of stabilization for singular perturbation problems with spectral methods. SIAM J. Numer. Anal. 29, 107–122 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gelb, A., Tadmor, E.: Enhanced spectral viscosity approximations for conservation laws. Appl. Numer. Math. 33, 3–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gerritsma, M.I., Phillips, T.N.: Discontinuous spectral element approximation for the velocity-pressure-stress formulation of the Stokes problem. Int. J. Numer. Methods Eng. 43, 1401–1419 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gerritsma, M.I., Proot, M.J.: Analysis of a discontinuous least-squares spectral element method. J. Sci. Comput. 17, 297–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: theory and applications. In: CBMS-NSF Regional Conference Series in Applied Mathematics No. 26. SIAM, Philadelphia (1977)

    Google Scholar 

  9. Gottlieb, D., Shu, C.W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heinrichs, W.: Least-squares spectral collocation for discontinuous and singular perturbation problems. J. Comput. Appl. Math. 157, 329–345 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heinrichs, W.: Least-squares spectral collocation for the Navier–Stokes equations. J. Sci. Comput. 21(1), 81–90 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heinrichs, W.: An adaptive least-squares spectral collocation method with triangular elements for the incompressible Navier–Stokes equations. J. Eng. Math. (2007) (to appear)

  13. Henderson, R.D.: Adaptive spectral element methods for turbulence and transition. In: Barth, T.J., Deconinck, H. (eds.) High Order Methods for Computational Physics, pp. 225–324. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  14. Jiang, B.-N.: A least-squares finite element method for incompressible Navier–Stokes problems. Int. J. Numer. Methods Fluids 14, 843–859 (1992)

    Article  MATH  Google Scholar 

  15. Jiang, B.-N.: On the least-squares method. Comput. Methods Appl. Mech. Eng. 152, 239–257 (1998)

    Article  MATH  Google Scholar 

  16. Jiang, B.-N., Chang, C.L.: Least-squares finite elements for the Stokes problem. Comput. Methods Appl. Mech. Eng. 78, 297–311 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang, B.-N., Povinelli, L.: Least-squares finite element method for fluid dynamics. Comput. Methods Appl. Mech. Eng. 81, 13–37 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Laney, C.B.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Peyret, R.: Spectral methods for incompressible viscous flow. In: Applied Mathematical Sciences, vol. 148. Springer, Berlin Heidelberg New York (2001)

    Google Scholar 

  21. Proot, M.J.: The least-squares spectral element method. Ph.D. thesis, Delft University of Technology (2003)

  22. Proot, M.J., Gerritsma, M.I.: A least-squares spectral element formulation for the Stokes problem. J. Sci. Comput. 17, 285–296 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Proot, M.J., Gerritsma, M.I.: Least-squares spectral elements applied to the Stokes problem. J. Comput. Phys. 181, 454–477 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Proot, M.J., Gerritsma, M.I..: Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier–Stokes equations. Numer. Algorithms 38, 155–172 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vandeven, H.: Family of spectral filters for discontinuous problems. J. Sci. Comput. 6, 159–192 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Heinrichs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinrichs, W. An adaptive spectral least-squares scheme for the Burgers equation. Numer Algor 44, 1–10 (2007). https://doi.org/10.1007/s11075-007-9071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9071-9

Keywords

Mathematics Subject Classification (2000)

Navigation