Skip to main content
Log in

On multiresolution schemes using a stencil selection procedure: applications to ENO schemes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is devoted to multiresolution schemes that use a stencil selection procedure in order to obtain adaptation to the presence of edges in the images. Since non adapted schemes, based on a centered stencil, are less affected by the presence of texture, we propose the introduction of some weight that leads to a more frequent use of the centered stencil in regions without edges. In these regions the different stencils have similar weights and therefore the selection becomes an ill-posed problem with high risk of instabilities. In particular, numerical artifacts appear in the decompressed images. Our attention is centered in ENO schemes, but similar ideas can be developed for other multiresolution schemes. A nonlinear multiresolution scheme corresponding to a nonlinear interpolatory technique is analyzed. It is based on a modification of classical ENO schemes. As the original ENO stencil selection, our algorithm chooses the stencil within a region of smoothness of the interpolated function if the jump discontinuity is sufficiently big. The scheme is tested, allowing to compare its performances with other linear and nonlinear schemes. The algorithm gives results that are at least competitive in all the analyzed cases. The problems of the original ENO interpolation with the texture of real images seem solved in our numerical experiments. Our modified ENO multiresolution will lead to a reconstructed image free of numerical artifacts or blurred regions, obtaining similar results than WENO schemes. Similar ideas can be used in multiresolution schemes based in other stencil selection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldroubi, A., Eden, M., Unser, M.: Discrete spline filters for multiresolutions and wavelets of L 2. SIAM J. Math. Anal. 25, 1412–1432 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis with error control for compact image representation. Signal Process. 82(4), 587–608 (2002)

    Article  Google Scholar 

  3. Amat, S., Aràndiga, F., Cohen, A., Donat, R., García, G., von Oehsen, M.: Data compresion with ENO schemes: a case study. Appl. Comput. Harmon. Anal. 11, 273–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amat, S., Busquier, S., El Kebir, D., Molina, J.: Compression of locally oscillatory signals with discontinuities. Int. Math. J. 2(12), 1141–1156 (2002)

    MathSciNet  Google Scholar 

  5. Amat, S., Busquier, S., Trillo, J.C.: Stable interpolatory multiresolution in 3D. Appl. Numer. Anal. Comput. Math. 2(2), 177–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Amat, S., Cherif, H., Trillo, J.C.: Denoising using linear and nonlinear multiresolutions. Eng. Comput. 22(7), 877–891 (2005)

    Article  Google Scholar 

  7. Aràndiga, F., Belda, A.M.: Weighted ENO interpolation and applications. Communications in Nonlinear Science & Numerical Simulation 9(2), 187–195 (2004)

    Article  MATH  Google Scholar 

  8. Aràndiga, F., Donat, R.: Nonlinear multi-scale decomposition: the approach of A. Harten. Numer. Algorithms 23, 175–216 (2000)

    Article  MATH  Google Scholar 

  9. Aràndiga, F., Donat, R., Mulet, P.: Adaptive interpolation of images. Signal Process. 83(2), 459–464 (2003)

    Article  MATH  Google Scholar 

  10. Bihari, B.L., Harten, A.: Application of generalized wavelets: an adaptative multiresolution scheme. J. Comput. Appl. Math. 61, 275–321 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chan, T.F., Vese, L.A.: Active contour and segmentation models using geometric PDE’s for medical imaging. In: Geometric Methods in Bio-medical Image Processing. Mathematics and Visualization, pp. 63–75. Springer, Berlin (2002)

    Google Scholar 

  12. Chan, T.F., Zhou, H.M.: Adaptive ENO-wavelet transforms for discontinuous functions. In: Domain Decomposition Methods in Sciences and Engineering, pp. 93–100. University of Chiba, Chiba, Japan (1999)

  13. Chan, T.F., Zhou, H.M.: ENO-wavelet transforms for piecewise smooth functions. SIAM J. Numer. Anal. 40(4), 1369–1404 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chui, C.K.: An Introduction to Wavelets. Academic, San Diego, CA (1992)

    MATH  Google Scholar 

  15. Chui, C.K., Wang, J.Z.: A cardinal spline approach to wavelets. Proc. Am. Math. Soc. 113, 785–793 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chui, C.K., Wang, J.Z.: A general framework of compactly supported splines and wavelets. J. Approx. Theory 71, 263–304 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Claypoole, R.L., Davis, G.M., Sweldens, W., Baraniuk, R.G.: Nonlinear wavelet transforms for image coding via lifting. IEEE Trans. Image Process. 12(12), 1449–1459 (2003)

    Article  MathSciNet  Google Scholar 

  18. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Tree approximation and optimal encoding. Appl. Comput. Harmon. Anal. 11(2), 192–226 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Ronald Harmonic analysis of the space BV. Rev. Mat. Iberoam. 19(1), 235–263 (2003)

    MATH  MathSciNet  Google Scholar 

  20. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cohen, A., DeVore, R., Petrushev, P., Xu, H.: Nonlinear approximation and the space BV(R 2). Am. J. Math. 121(3), 587–628 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dahmen, W.: Decomposition of refinable spaces and applications to operator equations. Numer. Algorithms 5, 229–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dahmen, W., Micchelli, C.A.: Biorthogonal wavelet expansions. Constr. Approx. 13(3), 293–328 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conference Series in Appl. Math., vol. 61. SIAM, Philadelphia, PA (1992)

    Google Scholar 

  26. Delauries, G., Dubuc, S.: Symmetric iterative interpolation scheme. Constr. Approx. 5, 49–68 (1989)

    Article  MathSciNet  Google Scholar 

  27. Donoho, D.: Interpolating Wavelet Transforms. University of Standford, Stanford, CA (1994)

  28. Donoho, D.: Denoising by soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Donoho, D.L.: Unconditional bases are optimal bases for data compression and for statistical estimation. Appl. Comput. Harmon. Anal. 1, 100–115 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Dyn, N.: Subdivision schemes in computer aided geometric design. In: Light, W.A. (ed.) Advances in Numerical Analysis II. Subdivision Algorithms and Radial Functions, pp. 36–104. Oxford University Press, Oxford (1992)

    Google Scholar 

  31. Fatemi, E., Jerome, J., Osher, S.: Solution if the hydrodynamic device model using high order non-oscillatory shock capturing schemes. IEEE Trans. Comput.-aided Des. Integr. Circuit Syst. 10, 232–244 (1991)

    Article  Google Scholar 

  32. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1995)

    Article  MathSciNet  Google Scholar 

  33. Harten, A.: Discrete multiresolution analysis and generalized wavelets. J. Appl. Numer. Math. 12, 153–192 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Harten, A.: Multiresolution representation of data II. SIAM J. Numer. Anal. 33(3), 1205–1256 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Harten, A., Osher, S.J., Engquist, B., Chakravarthy, S.R.: Some results on uniformly high-order accurate essentially non-oscillatory schemes. Appl. Numer. Math. 2, 347–377 (1987)

    Article  MathSciNet  Google Scholar 

  36. Harten, A., Engquist, B., Osher, S.J., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  37. Heijmans, H., Pesquet-Popescu, B., Piella, G.: Building nonredundant adaptive wavelets by update lifting. Appl. Comput. Harmon. Anal. 18(3), 252–281 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kamstra, L.: Nonlinear discrete wavelet transforms over finite sets and an application to binary image compression. J. Math. Imaging Vis. 23(3), 321–343 (2005)

    Article  MathSciNet  Google Scholar 

  39. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14, 710–732 (1992)

    Article  Google Scholar 

  40. Meyer, Y.: Ondelettes sur l’intervalle. Rev. Mat. Iberoam. 7, 115–133 (1992)

    Google Scholar 

  41. Micchelli, C.A.: Interpolatory subdivision schemes and wavelets. J. Approx. Theory 86(1), 41–71 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets. Numer. Algorithms 1, 75–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  43. Morel, J.-M., Solimini, S.: Variational methods in image segmentation. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 14. Birkhäuser, Boston, MA (1995)

    Google Scholar 

  44. Rabbani, M., Jones, P.W.: Digital image compression techniques. Tutorial text. Society of Photo-optical Instrumentation Engineers (SPIE), TT07 (1991)

  45. Said, A., Pearlman, W.A.: An image multiresolution representation for lossless and lossy compression. IEEE Trans. Image Process. 5(9), 1310–1310 (1996)

    Article  Google Scholar 

  46. Shapiro, J.: Embedded image coding using zerotrees of wavelets coefficient. IEEE Trans. Signal Process. 41, 3445–3462 (1993)

    Article  MATH  Google Scholar 

  47. Simoens, J., Vandewalle, S.: A stabilized lifting construction of wavelets on irregular meshes on the interval. SIAM J. Sci. Comput. 24(4), 1356–1378 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Shu, C.W.: Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comput. 5, 127–149 (1990)

    Article  MATH  Google Scholar 

  49. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  50. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  51. Thurnhofer, S., Lightstone, M., Mitra, S.K.: Adaptive interpolation of images with application to interlaced-to-progressive conversion. SPIE 2094, 614–625 (1993)

    Article  Google Scholar 

  52. Vese, L.A.: Multiphase object detection and image segmentation. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 175–194. Springer, New York (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Amat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amat, S., Busquier, S. & Trillo, J.C. On multiresolution schemes using a stencil selection procedure: applications to ENO schemes. Numer Algor 44, 45–68 (2007). https://doi.org/10.1007/s11075-007-9083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9083-5

Keywords

Mathematics Subject Classifications (2000)

Navigation