Skip to main content
Log in

A parameter-uniform numerical method for a Sobolev problem with initial layer

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The present study is concerned with the numerical solution, using finite difference method of a one-dimensional initial-boundary value problem for a linear Sobolev or pseudo-parabolic equation with initial jump. In order to obtain an efficient method, to provide good approximations with independence of the perturbation parameter, we have developed a numerical method which combines a finite difference spatial discretization on uniform mesh and the implicit rule on Shishkin mesh(S-mesh) for the time variable. The fully discrete scheme is shown to be convergent of order two in space and of order one expect for a logarithmic factor in time, uniformly in the singular perturbation parameter. Some numerical results confirming the expected behavior of the method are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiraliyev, G.M.: On the numerical solution of the system of Boussinesque with boundary layers. USSR Modelling in Mechanics 3, 3–14 (1988)

    Google Scholar 

  2. Amiraliyev, G.M.: Difference method for the solution of one problem of the theory of dispersive waves. USSR Differ. Equ. 26, 2146–2154 (1990)

    Google Scholar 

  3. Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for a singularly perturbed pseudo-parabolic equations. Tr. J. Math. 19, 207–222 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Barenblatt, G., Zheltov, I., Kochina, I.: Basic concept in the theory of seepage of homogeneous liquids in fissured rocks. J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  5. Chen, P.J., Gurtin, M.E.: On a theory of heat condution involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)

    Article  MATH  Google Scholar 

  6. Coleman, B.D., Noll, W.: An approximation theorem for functionals, with applications to continuum mechanics. Arch. National Mech. Anal. 6, 355–370 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davis, P.L.: A quasilinear parabolic and related third order problem. J. Math. Anal. Appl. 49, 327–335 (1970)

    Google Scholar 

  8. Ewing, R.E.: Numerical solution of Sobolev partial differential equations. SIAM J. Numer. Anal. 12, 345–363 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ewing, R.E.: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal. 15, 1125–1150 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust Computational Techniques for Boundary Layers. CRC Press, Boca Raton, FL (2000)

    MATH  Google Scholar 

  11. Ford, W.H., Ting, T.W.: Uniform error estimates for difference approximations to nonlinear pseudo-parabolic partial differential equations. SIAM. J. Numer. Anal. 15, 155–169 (1974)

    Article  MathSciNet  Google Scholar 

  12. Gu, H.: Characteristic finite element methods for non-linear Sobolev equations. Appl. Math. Comput. 102, 51–62 (1999)

    Article  MathSciNet  Google Scholar 

  13. Huilgol, R.: A second order fluids of the differential type. Int. J. Nonlinear Mech. 3, 471–482 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rektorys, K.: Variational Methods in Mathematics, Science and Engineerings. Dr. Reidel Publishing Company and SNTL, Prague (1980)

    Google Scholar 

  15. Roos, H.G., Stynes, M., Tobiska, L.: Numerical methods for singularly perturbed differential equations. In: Springer Series in Computational Mathematics, vol. 24. Springer, Berlin (1996)

    Google Scholar 

  16. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)

    MATH  Google Scholar 

  17. Showalter, R.E., Ting, T.W.: Pseudo-parabolic partial differential equations. SIAM J. Numer. Anal. 1, 1–26 (1970)

    MATH  MathSciNet  Google Scholar 

  18. Shishkin, G.I.: A difference scheme for a singularly perturbed parabolic equation degenerating on the boundary. USSR Comput. Maths. Math. Phys. 32, 621–636 (1992)

    MATH  MathSciNet  Google Scholar 

  19. Shishkin, G.I.: Grid approximation of singularly perturbed boundary value problems with convective term. Sov. J. Numer. Anal. Math. Model. 5, 173–187 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sun, T., Yang, D.: The finite difference streamline diffusion methods for Sobolev equations with convection-dominated term. Appl. Math. Comput. 125, 325–345 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ting, T.W.: Certain non-steady flows of second-order fluids. Arch. Ration. Mech. Anal. 14, 1–26 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Amiraliyev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiraliyev, G.M., Duru, H. & Amiraliyeva, I.G. A parameter-uniform numerical method for a Sobolev problem with initial layer. Numer Algor 44, 185–203 (2007). https://doi.org/10.1007/s11075-007-9096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9096-0

Keywords

Mathematics Subject Classifications (2000)

Navigation