Skip to main content
Log in

Eigenvalue problems to compute almost optimal points for rational interpolation with prescribed poles

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Explicit formulas exist for the (n,m) rational function with monic numerator and prescribed poles that has the smallest possible Chebyshev norm. In this paper we derive two different eigenvalue problems to obtain the zeros of this extremal function. The first one is an ordinary tridiagonal eigenvalue problem based on a representation in terms of Chebyshev polynomials. The second is a generalised tridiagonal eigenvalue problem which we derive using a connection with orthogonal rational functions. In the polynomial case (m = 0) both problems reduce to the tridiagonal eigenvalue problem associated with the Chebyshev polynomials of the first kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achieser, N.I.: Theory of Approximation. Frederick Ungar, New York (1956)

    MATH  Google Scholar 

  2. Bultheel, A., González Vera, P., Hendriksen, E., Njåstad, O.: Orthogonal Rational Functions. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 5. Cambridge University Press, Cambridge, MA (1999)

    Google Scholar 

  3. Bultheel, A., González Vera, P., Hendriksen, E., Njåstad, O.: Orthogonal rational functions and tridiagonal matrices. J. Comput. Appl. Math. 153(1–2), 89–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deckers, K., Van Deun, J., Bultheel, A.: Rational Gauss–Chebyshev quadrature formulas for complex poles outside [ − 1,1]. Math. Comput. in press (2007)

  5. Higham, D.J., Higham, N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20(2), 493–512 (1999) (electronic)

    Article  MathSciNet  Google Scholar 

  6. Rice, J.R.: The Approximation of Functions. Volume I: Linear Theory. Addison-Wesley, Reading, MA (1964)

    Google Scholar 

  7. Szegő, G.: Orthogonal Polynomials. In: Am. Math. Soc. Colloq. Publ., vol. 23. American Mathematical Society, Providence, RI (1967)

    Google Scholar 

  8. Trefethen, L.N.: Spectral Methods in MATLAB. In: Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)

    Google Scholar 

  9. Van Deun, J., Bultheel, A.: Orthogonal rational functions and quadrature on an interval. J. Comput. Appl. Math. 153(1–2), 487–495 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Van Deun, J., Bultheel, A., González Vera, P.: On computing rational Gauss–Chebyshev quadrature formulas. Math. Comput. 75, 307–326 (2006)

    Article  MATH  Google Scholar 

  11. Van Deun, J., Deckers, K., Bultheel, A.: Algorithm XXX: Almost optimal points for rational interpolation with prescribed poles, and rational Gauss–Chebyshev quadrature. (Submitted)

  12. Weideman, J.A.C., Laurie, D.P.: Quadrature rules based on partial fraction expansions. Numer. Algorithms 24, 159–178 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon, Oxford (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris Van Deun.

Additional information

Postdoctoral researcher FWO-Flanders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Deun, J. Eigenvalue problems to compute almost optimal points for rational interpolation with prescribed poles. Numer Algor 45, 89–99 (2007). https://doi.org/10.1007/s11075-007-9109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9109-z

Keywords

Navigation