Skip to main content
Log in

P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the construction of P-stable exponentially-fitted symmetric two-step Obrechkoff methods for solving second order differential equations related to an initial value problem. Our approach is based on two ideas: for the exponential fitting, we follow the ideas of Ixaru and Vanden Berghe; for the P-stability we introduce exponentially-fitted Padé approximants to the exponential function. By combining these two ideas, we are able to construct P-stable methods of arbitrary (even) order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ananthakrishnaiah, U.: Adaptive methods for periodic initial value problems of second order differential equations. J. Comput. Appl. Math. 8, 101–104 (1982)

    Article  MathSciNet  Google Scholar 

  2. Ananthakrishnaiah, U.: P-stable Obrechkoff methods with minimal phase-lag for periodic initial value problems. Math. Comput. 49, 553–559 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brusa, L., Nigro, L.: A one-step method for direct integration of structural dynamic equations. Int. J. Numer. Math. Eng. 15, 685–699 (1980)

    Article  MATH  Google Scholar 

  4. Cash, J.R.: High order P-stable formulae for the numerical integration of periodic initial value problems. Numer. Math. 37, 355–370 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chawla, M.M.: Two-step fourth order P-stable methods for second order differential equations. BIT 21, 190–193 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chawla, M.M., Neta, B.: Families of two-step fourth-order P-stable methods for second order differential equations. J. Comput. Appl. Math. 15, 213–223 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chawla, M.M., Rao, P.S.: A Noumerov-type method with minimal phase-lag for the integration of second-order periodic initial-value problems. II Explicit method. J. Comput. Appl. Math. 15, 329–333 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chawla, M.M., Rao, P.S., Neta, B.: Two-step fourth-order P-stable methods with phase-lag of order six for y′′ = f(t,y). J. Comput. Appl. Math. 16, 233–236 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chawla, M.M., Rao, P.S.: An explicit sixth-order method with phase-lag of order eight for y′′ = f(t,y). J. Comput. Appl. Math. 17, 365–368 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Coleman, J.P., Ixaru, L.Gr.: P-stabilty and exponential-fitting methods for y′′ = f(x,y). IMA J. Numer. Anal. 14, 1–12 (1995)

    Google Scholar 

  11. Dai, Y., Wang, Z., Wu, D.: A four-step trigonometric fitted P-stable Obrechkoff method for the periodic initial-value problems. J. Comput. Appl. Math. 187, 192–201 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Van Dooren, R.: Stabilization of Cowell’s methods. J. Comput. Phys. 16, 186–192 (1974)

    Article  Google Scholar 

  13. Gladwell, I., Thomas, R.M.: A-stable methods for second order differential systems and their relation to Padé approximants. In: Graves-Morris, P.R. et al. (eds.) Rational Approximants and Interpolation. Lecture notes in Mathematics, vol. 1105, pp. 419–430. Springer-Verlag.

  14. Hairer, E.: Unconditionally stable methods for second order differential equations. Numer. Math. 32, 373–379 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting, Mathematics and Its Application, vol. 568. Kluwer Academic Publications (2004)

  16. Lambert, J.D., Mitchell, A.R.: On the solution of y′ = f(x,y) by a class of high accuracy difference formulae of low order. Z. Angew. Math. Phys. 13, 223–232 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Obrechkoff, N.: Sur les quadrature mecanique (in Bulgarian, French summary). Spisanie Bulgar. Akad. Nauk. 65, 191–289 (1942)

    MathSciNet  Google Scholar 

  19. Neta, B.: P-stable high-order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54, 117–126 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rai, A.S., Ananthakrishnaiah, U.: Obrechkoff methods having additional parameters for general second-order differential equations. J. Comput. Math. Appl. 79, 167–182 (1997)

    Article  MATH  Google Scholar 

  21. Raptis, A.D., Simos, T.E.: A four-step phase fitted method for the numerical integration of second order initial-value problems. BIT 31, 160–168 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sakas, D.P., Simos, T.E.: A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37, 317–331 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sakas, D.P., Simos, T.E.: Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrodinger equation. Comm. Math. Computer Chem. 53, 299–320 (2005)

    MATH  MathSciNet  Google Scholar 

  24. Simos, T.E., Raptis, A.D.: Numerov-type methods with minimal phase-lag for the numerical integration of the one-dimensional Schrödinger equation. Computing 45, 175–181 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Simos, T.E.: A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial-value problems. Proc. R. Soc. Lond., A 441, 283–289 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Simos, T.E.: A two-step method with phase-lag of order infinity for the numerical integration of second order periodic initial-value problem. Int. J. Comput. Math. 39, 135–140 (1991)

    Article  MATH  Google Scholar 

  27. Stiefel, T.E., Bettis, D.G.: Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, Z., Wang, Y.: A new kind of high-efficient and high-accurate P-stable Obrechkoff three-step method for periodic initial-value problems. Comput. Phys. Commun. 171, 79–92 (2005)

    Article  Google Scholar 

  29. Wang, Z., Zhao, D., Dai, Y., Wu, M.: An improved trigonometrically fitted P-stable Obrechkoff method for periodic initial-value problems. Proc. R. Soc. A 461, 1639–1658 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhao, D., Wang, Z., Dai, Y.: Importance of the first-order derivative formula in the Obrechkoff methods. Comput. Phys. Commun. 167, 65–75 (2005)

    Article  Google Scholar 

  31. Vanden Berghe, G., Van Daele, M.: Exponentially-fitted Obrechkoff methods for second-order differential equations. APNUM. Proceedings of Numdiff11 (accepted for publication)

  32. Van Daele, M., Vanden Berghe, G.: P-stable Obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44, 115–131 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Van Daele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Daele, M., Vanden Berghe, G. P-stable exponentially-fitted Obrechkoff methods of arbitrary order for second-order differential equations. Numer Algor 46, 333–350 (2007). https://doi.org/10.1007/s11075-007-9142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9142-y

Keywords

Navigation