Skip to main content
Log in

Solution of a class of singular boundary value problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work a class of singular ordinary differential equations is considered. These problems arise from many engineering and physics applications such as electro-hydrodynamics and some thermal explosions. Adomian decomposition method is applied to solve these singular boundary value problems. The approximate solution is calculated in the form of series with easily computable components. The method is tested for its efficiency by considering four examples and results are compared with previous known results. Techniques that can be applied to obtain higher accuracy of the present method has also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chawla, M.M., Katti, C.P.: Finite difference methods and their convergence for a class of singular two-point boundary value problems. Numer. Math. 39, 341–350 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Qu, R., Agarwal, P.: A collocation method for solving a class of singular nonlinear two-point boundary value problems. J. Comput. Appl. Math. 83, 147–163 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kumar, M.: A fourth order spline finite difference method for singular two-point boundary value problems. Int. J. Comput. Math. 80, 1499–1504 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kumar, M., Aziz, T.: A uniform mesh finite difference method for a class of singular two-point boundary value problems. Appl. Math. Comput. 180, 173–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Pandey, R.K.: On a class of weakly regular singular two point boundary value problems, II. J. Differ. Equ. 127, 110–123 (1996)

    Article  MATH  Google Scholar 

  6. Chawla, M.M., Subramanian, R.: A new spline method for singular two-point boundary value problems. J. Inst. Math. Appl. 24, 291 (1988)

    Google Scholar 

  7. Pandey, R.K., Singh, A.K.: On the convergence of a finite difference method for general singular boundary value problems. Int. J. Comput. Math. 80, 1323–1331 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the EmdenFowler equation. Appl. Math. Comput. 161, 543–560 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Adomian, G.: Nonlinear Stochastic Systems Theory and Applications to Physics. Kluwer, Dordrecht, Holland (1989)

    MATH  Google Scholar 

  10. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Press, Boston (1994)

    MATH  Google Scholar 

  11. Adomian, G.: A review of the decomposition method and some recent results for nonlinear equations. Comput. Math. Appl. 21, 101–127 (1989)

    Article  MathSciNet  Google Scholar 

  12. Cherruault, Y., Adomian, G.: Decomposition method: a new proof of convergence. Math. Comput. Model. 18(12), 103–106 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hosseini, M.M., Nasabzadeh, H.: On the convergence of Adomian decomposition method. Appl. Math. Comput. 44, 13–24 (2006)

    MathSciNet  Google Scholar 

  14. Jiao, Y.C., Yamamoto, Y., Dang, C., Hao, Y.: An aftertreatment technique for improving the accuracy of Adomian’s decomposition method. Comput. Math. Appl. 43, 783–798 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ghosh, S., Roy, A., Roy, D.: An adaption of Adomian decomposition for numeric-analytic integration of strongly nonlinear and chaotic oscillators. Comput. Methods Appl. Mech. Eng. 196, 1133–1153 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guellal, S., Grimalt, P., Cherruault, Y.: Numerical study of Lorenz’s equation by the Adomian method. Comput. Math Appl. 33, 25–29 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Vadasz, P., Olek, S.: Convergence and accuracy of Adomian’s decomposition method for the solution of Lorenz equations. Int. J. Heat Mass Transfer 43, 1715–1734 (2000)

    Article  MATH  Google Scholar 

  18. Vadasz, P., Olek, S.: Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media. Transp. Porous Media 37(1), 69–91 (1999)

    Article  MathSciNet  Google Scholar 

  19. Vadasz, P.: Local and global transitions to chaos and hysteresis in a porous layer heated from below. Transp. Porous Media 37(2), 213–245 (1999)

    Article  MathSciNet  Google Scholar 

  20. Vadasz, P.: Subcritical transitions to chaos and hysteresis in a fluid layer heated from below. Int. J. Heat Mass Transfer 43(5), 705–724 (2000)

    Article  MATH  Google Scholar 

  21. Vadasz, P., Olek, S.: Route to chaos for moderate Prandtl number convection in a porous layer heated from below. Transp. Porous Media 41(2), 211–239 (2000)

    Article  Google Scholar 

  22. Repaci, A.: Non-linear dynamical systems: on the accuracy of Adomian’s decomposition method. Appl. Math. Lett. 3, 35–39 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mittal, R.C., Nigam, R.: Solution of two dimentional fractional dispersion equations by Adomian decomposition method. In: Proceedings of the 2nd International Congress on Computational Mechanics and Simulation (ICCMS-06), pp. 1636–1640 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruchi Nigam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittal, R.C., Nigam, R. Solution of a class of singular boundary value problems. Numer Algor 47, 169–179 (2008). https://doi.org/10.1007/s11075-007-9155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9155-6

Keywords

Navigation