Skip to main content
Log in

Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We introduce polynomials \(B^n_{k}(\boldmath{x};\omega|q)\) of total degree n, where \(\boldmath{k} = (k_1,\ldots,k_d)\in\mathbb N_0^d, \; 0\le k_1+\ldots+k_d\le n\), and \(\boldmath{x}=(x_1,x_2,\ldots,x_d)\in\mathbb R^d\), depending on two parameters q and ω, which generalize the multivariate classical and discrete Bernstein polynomials. For ω=0, we obtain an extension of univariate q-Bernstein polynomials, introduced by Phillips (Ann Numer Math 4:511–518, 1997). Basic properties of the new polynomials are given, including recurrence relations, q-differentiation rules and de Casteljau algorithm. For the case d=2, connections between \(B^n_{k}(\boldmath{x};\omega|q)\) and bivariate orthogonal big q-Jacobi polynomials—introduced recently by the first two authors—are given, with the connection coefficients being expressed in terms of bivariate q-Hahn polynomials. As limiting forms of these relations, we give connections between bivariate q-Bernstein and Dunkl’s (little) q-Jacobi polynomials (SIAM J Algebr Discrete Methods 1:137–151, 1980), as well as between bivariate discrete Bernstein and Hahn polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge Univ. Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Area, I., Godoy, E., Woźny, P., Lewanowicz, S., Ronveaux, A.: Formulae relating q-Bernstein, little q-Jacobi and q-Hahn polynomials: application to the q-Bézier curve evaluation. Integral Transforms Spec. Funct. 15, 375–385 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ciesielski, Z.: Explicit formula relating the Jacobi, Hahn and Bernstein polynomials. SIAM J. Math. Anal. 18, 1573–1575 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Derriennic, M.-M.: On multivariate approximation by Bernstein-type polynomials. J. Approx. Theory 45, 155–166 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Derriennic, M.-M.: Modified Bernstein polynomials and Jacobi polynomials in q-calculus. Rend. Circ. Mat. Palermo Suppl. 76 (Serie II), 269–290 (2005)

    MathSciNet  Google Scholar 

  6. Dunkl, C.F.: Orthogonal polynomials in two variables of q-Hahn and q-Jacobi type. SIAM J. Algebr. Discrete Methods 1, 137–151 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge Univ. Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Farin, G.E.: Curves and Surfaces for Computer-Aided Geometric Design. A Practical Guide. Third ed. Academic Press, Boston (1996)

    Google Scholar 

  9. Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  10. Gasper, G., Rahman, M.: Some systems of multivariable orthogonal q-Racah polynomials. Ramanujan J. 13, 389–405 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K. Peters, Wellesley, MA (1993)

    MATH  Google Scholar 

  12. Il’inski, A., Ostrovska, S.: Convergence of generalized Bernstein polynomials. J. Approx. Theory 116, 100–112 (2002)

    Google Scholar 

  13. Koornwinder, T.H.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R.A. (ed.) Theory and Application of Special Functions, pp. 435–495. Academic Press, New York (1975)

    Google Scholar 

  14. Koekoek, R., Swarttouw, R.F.: The Askey scheme of hypergeometric orthogonal polynomials and its q-analogue. Fac. Techn. Math. Informatics, Delft Univ. of Technology, Rep. 98-17, Delft (1998)

  15. Lewanowicz, S., Woźny, P.: Generalized Bernstein polynomials. BIT 44, 63–78 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lewanowicz, S., Woźny, P.: Dual generalized Bernstein basis. J. Approx. Theory 138, 129–150 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lewanowicz, S., Woźny, P.: Connections between two-variable Bernstein and Jacobi polynomials on the triangle. J. Comput. Appl. Math. 197, 520–533 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lewanowicz, S., Woźny, P.: Two-variable orthogonal polynomials of the big q-Jacobi type (submitted)

  19. Lorentz, G.G.: Bernstein polynomials, 2nd edn. Chelsea Publ. Co., New York (1986)

    MATH  Google Scholar 

  20. Neamtu, M.: A contribution to the theory and practice of multivariate splines. PhD thesis, University of Twente Dec. (1991)

  21. Ostrovska, S.: q-Bernstein polynomials and their iterates. J. Approx. Theory 123, 232–255 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Phillips, G.M.: Bernstein polynomials based on the q-integers. Ann. Numer. Math. 4, 511–518 (1997)

    MATH  MathSciNet  Google Scholar 

  23. Phillips, G.M.: Interpolation and Approximation by Polynomials. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  24. Ronveaux, A., Zarzo, A., Area, I., Godoy, E.: Bernstein bases and Hahn–Eberlein orthogonal polynomials. Integral Transforms Spec. Funct. 7, 87–96 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sablonnière, P.: Discrete Bernstein bases and Hahn polynomials. J. Comput. Appl. Math. 49, 233–241 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sablonnière, P.: Recent progress on univariate and multivariate polynomial and spline quasi-interpolants. In: de Bruin, M.G., Mache, D.H., Szabados, J. (eds.) Trends and Applications in Constructive Approximation, Internat. Ser. Numer. Math., vol. 177, pp. 229–245. Birkhäuser Verlag, Basel (2005)

    Chapter  Google Scholar 

  27. Sauer, T.: The genuine Bernstein–Durrmeyer operator on a simplex. Results Math. 26, 99–130 (1994)

    MATH  MathSciNet  Google Scholar 

  28. Stanton, D.: Product formulas for q-Hahn polynomials. SIAM J. Math. Anal. 11, 100–107 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Tratnik, M.V.: Some multivariate orthogonal polynomials of the Askey tableau—discrete families. J. Math. Phys. 32, 2337–2342 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, H.: Properties of convergence for ω,q-Bernstein polynomials. J. Math. Anal. Appl. 340, 1096–1108 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanisław Lewanowicz.

Additional information

Dedicated to the memory of Luigi Gatteschi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewanowicz, S., Woźny, P., Area, I. et al. Multivariate generalized Bernstein polynomials: identities for orthogonal polynomials of two variables. Numer Algor 49, 199–220 (2008). https://doi.org/10.1007/s11075-008-9168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9168-9

Keywords

Mathematics Subject Classifications (2000)

Navigation