Skip to main content
Log in

Perturbation analysis and condition numbers of scaled total least squares problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The standard approaches to solving an overdetermined linear system Ax ≈ b find minimal corrections to the vector b and/or the matrix A such that the corrected system is consistent, such as the least squares (LS), the data least squares (DLS) and the total least squares (TLS). The scaled total least squares (STLS) method unifies the LS, DLS and TLS methods. The classical normwise condition numbers for the LS problem have been widely studied. However, there are no such similar results for the TLS and the STLS problems. In this paper, we first present a perturbation analysis of the STLS problem, which is a generalization of the TLS problem, and give a normwise condition number for the STLS problem. Different from normwise condition numbers, which measure the sizes of both input perturbations and output errors using some norms, componentwise condition numbers take into account the relation of each data component, and possible data sparsity. Then in this paper we give explicit expressions for the estimates of the mixed and componentwise condition numbers for the STLS problem. Since the TLS problem is a special case of the STLS problem, the condition numbers for the TLS problem follow immediately from our STLS results. All the discussions in this paper are under the Golub-Van Loan condition for the existence and uniqueness of the STLS solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  2. Cucker, F., Diao, H., Wei, Y.: On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems. Math. Comput. 76, 947–963 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Fierro, R.D., Bunch, J.R.: Perturbation theory for orthogonal projection methods with applications to least squares and total least squares. Linear Algebra Appl. 234, 71–96 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gohberg, I., Koltracht, I.: Mixed, componentwise, and structured condition numbers. SIAM J. Matrix Anal. Appl. 14, 688–704 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golub, G.H., Van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17, 883–893 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Graham, A.: Kronecker Products and Matrix Calculus with Application. Wiley, New York (1981)

    Google Scholar 

  7. Higham, N.J.: Accuracy, Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Google Scholar 

  8. Higham, N.J.: A survey of componentwise perturbation theory in numerical linear algebra. Proc. Symp. Appl. Math. 48, 49–77 (1994)

    MathSciNet  Google Scholar 

  9. Hnětynková, I., Strakoš, Z.: Lanczos tridiagonalization and core problems. Linear Algebra Appl. 421, 243–251 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kukush, A., Markovsky, I., Van Huffel, S.: Consistency of the structured total least squares estimator in a multivariate errors-in-variables model. J. Stat. Plan. Inference 133, 315–358 (2005)

    Article  MATH  Google Scholar 

  11. Kukush, A., Van Huffel, S.: Consistency of elementwise-weighted total least squares estimator in a multivariate errors-in-variables model AX = B. Metrika 59, 75–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, X.: On the solvability and perturbation analysis for tatal least squares problem. Acta Math. Appl. Sin. 19, 254–262 (1996) (in Chinese)

    MATH  Google Scholar 

  13. Markovsky, I., Rastello, M.L., Premoli, A., Kukush, A., Van Huffel, S.: The element-wise weighted total least-squares problem. Comput. Stat. Data Anal. 50, 181–209 (2006)

    Article  MATH  Google Scholar 

  14. Markovsky, I., Van Huffel, S.: Overview of total least-squares methods. Signal Process. 87, 2283–2302 (2007)

    Article  Google Scholar 

  15. Paige, C.C., Strakoš, Z.: Bounds for the least squares distance using scaled total least squares. Numer. Math. 91, 93–115 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Paige, C.C., Strakoš, Z.: Scaled total least squares fundamentals. Numer. Math. 91, 117–146 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Paige, C.C., Strakoš, Z.: Core problems in linear algebraic systems. SIAM J. Matrix Anal. Appl. 27, 861–875 (2006)

    Article  MATH  Google Scholar 

  18. Rao, B.D.: Unified treatment of LS, TLS and truncated SVD methods using a weighted TLS framework. In: Van Huffel, S. (ed.) Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, pp. 11–20. SIAM, Philadelphia (1997)

    Google Scholar 

  19. Rohn, J.: New condition numbers for matrices and linear systems. Computing 41, 167–169 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Skeel, R.D.: Scaling for numerical stability in Gaussian elimination. J. Assoc. Comput. Math. 26, 167–169 (1979)

    MathSciNet  Google Scholar 

  21. Stewart, G.W.: A second order perturbation expansion for small singular values. Linear Algebra Appl. 56, 231–235 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sun, J.-G.: A note on simple non-zero singular values. J. Comput. Math. 6, 258–266 (1988)

    MATH  MathSciNet  Google Scholar 

  23. Van Huffel, S.: Analysis of the total least squares problem and its use in parameter estimation. Dissertation, ESAT Lab., Dept. Electr. Eng., K.U. Leuven (1987)

  24. Van Huffel, S.: On the significance of nongeneric total least squares problems. SIAM J. Matrix Anal. Appl. 13, 20–35 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  25. Van Huffel, S., Vandewalle, J.: Analysis and solution of the nongeneric total least squares problems. SIAM J. Matrix Anal. Appl. 9, 360–372 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Van Huffel, S., Vandewalle, J.: Analysis and properties of the generalized total least squares problems AX ≈ B when some or all columns in A are subject to error. SIAM J. Matrix Anal. Appl. 10, 294–315 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Van Huffel, S., Vandewalle, J.: Algebraic connections between the least squares and total least squares problems. Numer. Math. 55, 431–449 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia (1991)

    MATH  Google Scholar 

  29. Van Huffel, S., Zha, H.: The restricted total least squares problem: formulation, algorithm, and properties. SIAM J. Matrix Anal. Appl. 12, 292–309 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, G., Wei, Y., Qiao, S.: Generalized Inverses: Theory and Computations. Science, Beijing (2004)

    Google Scholar 

  31. Wei, M.: The analysis for the total least squares problem with more than one solution. SIAM J. Matrix Anal. Appl. 13, 746–763 (1992)

    Article  MathSciNet  Google Scholar 

  32. Wei, M.: On the perturbation of the LS and TLS problems. Math. Numer. Sinica 20(3), 267–278 (1998) (in Chinese)

    Google Scholar 

  33. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Oxford University Press, London (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Wei.

Additional information

In memory of Prof. Gene H. Golub.

Yimin Wei is supported by the National Natural Science Foundation of China under grant 10871051, Shanghai Science & Technology Committee under grant 08DZ2271900 and Shanghai Education Committee under grant 08SG01. Sanzheng Qiao is partially supported by Shanghai Key Laboratory of Contemporary Applied Mathematics of Fudan University during his visiting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Lin, L., Wei, Y. et al. Perturbation analysis and condition numbers of scaled total least squares problems. Numer Algor 51, 381–399 (2009). https://doi.org/10.1007/s11075-009-9269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9269-0

Keywords

Mathematics Subject Classifications (2000)