Abstract
We provide new sufficient convergence conditions for the semilocal convergence of Ulm’s method (Tzv Akad Nauk Est SSR 16:403–411, 1967) in order to approximate a locally unique solution of an equation in a Banach space setting. We show that in some cases, our hypotheses hold true but the corresponding ones in Burmeister (Z Angew Math Mech 52:101–110, 1972), Kornstaedt (Aequ Math 13:21–45, 1975), Moser (1973), and Potra and Pták (Cas Pest Mat 108:333–341, 1983) do not. We also show that under the same hypotheses and computational cost, finer error bounds can be obtained. Some error bounds are also shown to be sharp. Numerical examples are also provided further validating the results.
Similar content being viewed by others
References
Argyros, I.K.: The Theory and Application of Abstract Polynomial Equations. St. Lucie/CRC/Lewis, Boca Raton, Florida, USA (1998)
Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)
Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, New York (2008)
Argyros, I.K., Chen, D.: An inverse-free Jarratt type approximation in a Banach space. Approx. Theory Appl. 12, 19–30 (1996)
Burmeister, W.: Inversion freie verfahren zur lösung nichtlinearen operatorgleichungen. Z. Angew. Math. Mech. 52, 101–110 (1972)
Chandrasekhar, S.: Radiative Transfer. Dover, New York, USA (1960)
Hald, O.H.: On a Newton–Moser type method. Numer. Math. 23, 411–425 (1975)
Hernánadez, M.A., Rubio, M.J., Ezquerro, J.A.: Secant-like methods for solving integral equations of the Hammerstein type. J. Comput. Appl. Math. 115, 245–254 (2001)
Kornstaedt, H.J.: Funktionallongleichungen und iterations verfahren. Aequ. Math. 13, 21–45 (1975)
Kurchatov, V.A.: Optimization, with respect to the number of arithmetic operations and entropy, of difference methods of linearization (Russian). Iz. VUZ 4, 33–37 (1990)
Moser, J.: Stable and random motions in dynamical systems with special emphasis on celestial mechanics, Herman Weil Lectures. In: Annals of Mathematics Studies, vol. 77. Princeton Univ. Press, Princeton, NJ (1973)
Petzeltova, H.: Remark on a Newton–Moser type method. Comment. Math. Univ. Carol. 21, 719–725 (1980)
Potra, F.A.: An application of the induction method of V. Pták to the study of regula falsi. Apl. Mat. 26, 111–120 (1981)
Potra, F.A.: An error analysis for the secant method. Numer. Math. 38, 427–445 (1981/82)
Potra, F.A., Pták, V.: Nondiscrete induction and an inversion-free modification of Newton’s method. Cas. Pest. Mat. 108, 333–341 (1983)
Schmidt, J.W.: Überlinear konvergente Mehrschrittverfahren vom Regula falsi- und Newton-Typ (German). Z. Angew. Math. Mech. 53, 103–114 (1973)
Schmidt, J.W.: Eine Übertragung der Regula Falsi auf Gleichungen in Banachräumen, I. Nichtlineare Gleichungssysteme (German). Z. Angew. Math. Mech. 43, 1–8 (1963)
Schmidt, J.W.: Eine Übertragung der Regula Falsi auf Gleichungen in Banachräumen, II. Nichtlineare Gleichungssysteme (German). Z. Angew. Math. Mech. 43, 97–110 (1963)
Sergeev, A.S.: The method of chords (Russian). Sib. Mat. Z. 2, 282–289 (1961)
Ulm, S.: On iterative methods with successive approximation of the inverse operator (in Russian). Tzv. Akad. Nauk Est. SSR 16, 403–411 (1967)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Argyros, I.K. On Ulm’s method using divided differences of order one. Numer Algor 52, 295–320 (2009). https://doi.org/10.1007/s11075-009-9274-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-009-9274-3