Skip to main content
Log in

Geometric computation of the numerical radius of a matrix

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We use methods of geometric computing combined with hermitean matrix eigenvalue/eigenvector evaluations to find the numerical radius w(A) of a real or complex square matrix A simply, quickly, and accurately. The numerical radius w(A) is defined as the maximal distance of points in the field of values \(F(A) = \{ x^* A x \mid \|x\|_2 = 1 \}\) from zero in ℂ. Its value is an indicator of the transient behavior of the discrete dynamical system f k + 1 = Af k . We describe and test a MATLAB code for solving this optimization problem that can have multiple and even infinitely many solutions with maximal distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bendixson, I.: Sur les racines d’une équation fondamentale. Acta Math. 25, 358–365 (1902)

    Article  MathSciNet  Google Scholar 

  2. Donoghue, W.F. Jr.: On the numerical range of a bounded operator. Mich. Math. J. 4, 262–246 (1957)

    MathSciNet  Google Scholar 

  3. Fiedler, M.: Geometry of the numerical range of matrices. Linear Algebra Appl. 37, 81–96 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  4. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. Johns Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  5. Hogben, L. (ed.): Handbook of Linear Algebra. Chapman & Hall, London (2007)

    MATH  Google Scholar 

  6. He, C., Alistair Watson, G.: An algorithm for computing the numerical radius. IMA J. Numer. Anal. 17, 329–342 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Higham, N.J., Tisseur, F., van Dooren, P.M.: Detecting a definite hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems. Linear Algebra Appl. 351–352, 455–474 (2002)

    Article  Google Scholar 

  8. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  9. Johnson, C.R.: Numerical determination of the field of values of a general complex matrix. SIAM J. Numer. Anal. 15, 595–602 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jonckheere, E.A., Ahmad, F., Gutkin, E.: Differential topology of numerical range. Linear Algebra Appl. 279, 227–254 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Mengi, E., Overton, M.L.: Algorithms for the computation of the pseudospectral radius and the numerical radius of a matrix. IMA J. Numer. Anal. 25, 648–669 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mengi, E., Overton, M.L.: MATLAB code numr.m. In: Software for Robust Stability Measures. http://www.cs.nyu.edu/mengi/robuststability.html (2009)

  13. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  14. Trefethen, L.N., Battles, Z.: Chebfun, a Collection of MATLAB Algorithms. http://web.comlab.ox.ac.uk/projects/chebfun/ (2002)

  15. Uhlig, F.: MATLAB m-file, NumRadius.m. http://www.auburn.edu/~uhligfd/m_files/NumRadius.m (2008)

  16. Uhlig, F.: MATLAB m-file, numrchebfun.m. http://www.auburn.edu/~uhligfd/m_files/numrchebfun.m (2008) [Note: this m-file uses the Chebfun software, available for download, see [14]]

  17. Alistair Watson, G.: Computing the numerical radius. Linear Algebra Appl. 234, 163–172 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Uhlig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlig, F. Geometric computation of the numerical radius of a matrix. Numer Algor 52, 335–353 (2009). https://doi.org/10.1007/s11075-009-9276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9276-1

Keywords

Mathematics Subject Classifications (2000)