Skip to main content
Log in

New variants of Jarratt’s method with sixth-order convergence

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, by using the two-variable Taylor expansion formula, we introduce some new variants of Jarratt’s method with sixth-order convergence for solving univariate nonlinear equations. The proposed methods contain some recent improvements of Jarratt’s method. Furthermore, a new variant of Jarratt’s method with sixth-order convergence for solving systems of nonlinear equations is proposed only with an additional evaluation for the involved function, and not requiring the computation of new inverse. Numerical comparisons are made to show the performance of the presented methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Servral Variables. Academic, New York (1970)

    Google Scholar 

  2. Argyros, I.K.: Convergence and Application of Newton-Type Iterations. Springer, New York (2008)

    Google Scholar 

  3. Ostrowski, A.M.: Solution of Equations in Euclidean and Banach Spaces. Academic, New York (1960)

    Google Scholar 

  4. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  5. Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20(95), 434–437 (1966)

    Article  MATH  Google Scholar 

  6. King, R.F.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  7. Argyros, I.K., Chen, D., Qian, Q.: The Jarratt method in Banach space setting. J. Comput. Appl. Math. 51, 103–106 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hernandez, M.A., Salanova, M.A.: Relaxing convergence conditions for the Jarratt method. Southwest Journal of Pure and Applied Mathematic 2, 16–19 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Argyros, I.K.: A new convergence theorem for the Jarratt method in Banach space. Comput. Math. Appl. 36, 13–18 (1998)

    Article  MATH  Google Scholar 

  10. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Amat, S., Busquier, S., Plaza, S.: Dynamics of the King and Jarratt iterations. Aequ. Math. 69, 212–223 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grau, M., Díaz-Barrero, J.L.: An improvement to Ostrowski root-finding method. Appl. Math. Comput. 173, 450–456 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kou, J., Li, Y., Wang, X.: An improvement of the Jarrat method. Appl. Math. Comput. 189, 1816–1821 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sharma, J.R., Guha, R.K.: A family of modified Ostrowski methods with accelerated sixth-order convergence. Appl. Math. Comput. 190, 111–115 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl. Math. Comput. 190, 1432–1437 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chun, C., Ham, Y.: Some sixth-order variants of Ostrowski root-finding methods. Appl. Math. Comput. 193, 389–394 (2007)

    Article  MathSciNet  Google Scholar 

  17. Kou, J., Li, Y., Wang, X.: Some variants of Ostrowski’s method with seventh-order convergence. J. Comput. Appl. Math. 209, 153–159 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grau-Sánchez, M.: Improvements of the efficiency of some three-step iterative like-Newton methods. Numer. Math. 107, 131–146 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bi, W., Ren, H., Wu, Q.: New family of seventh-order methods for nonlinear equations. Appl. Math. Comput. 203, 408–412 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wang, X., Kou, J., Li, Y.: A variant of Jarratt method with sixth-order convergence. Appl. Math. Comput. 204, 14–19 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nedzhibov, G.H.: A family of multi-point iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 222, 244–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 225, 105–112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmin Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, H., Wu, Q. & Bi, W. New variants of Jarratt’s method with sixth-order convergence. Numer Algor 52, 585–603 (2009). https://doi.org/10.1007/s11075-009-9302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9302-3

Keywords

Mathematics Subject Classifications (2000)