Skip to main content
Log in

Efficient three-step iterative methods with sixth order convergence for nonlinear equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present two new three-step iterative methods for solving nonlinear equations with sixth convergence order. The new methods are obtained by composing known methods of third order of convergence with Newton’s method and using an adequate approximation for the derivative, that provides high order of convergence and reduces the required number of functional evaluations per step. The first method is obtained from Potra-Pták’s method and the second one, from Homeier’s method, both reaching an efficiency index of 1.5651. Our methods are comparable with the method of Parhi and Gupta (Appl Math Comput 203:50–55, 2008). Methods proposed by Kou and Li (Appl Math Comput 189:1816–1821, 2007), Wang et al. (Appl Math Comput 204:14–19, 2008) and Chun (Appl Math Comput 190:1432–1437, 2007) reach the same efficiency index, although they start from a fourth order method while we use third order methods and simpler arithmetics. We prove the convergence results and check them with several numerical tests that allow us to compare the convergence order, the computational cost and the efficiency order of our methods with those of the original methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parhi, S.K., Gupta, D.K.: A six order method for nonlinear equations. Appl. Math. Comput. 203, 50–55 (2008). doi:10.1016/j.amc.2008.03.037

    Google Scholar 

  2. Kou, J., Li, Y.: An improvement of the Jarrat’s method. Appl. Math. Comput. 189, 1816–1821 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wang, X., Kou, J., Li, Y.: A variant of Jarrat’s method with sixth-order convergence. Appl. Math. Comput. 204, 14–19 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chun, C.: Some improvements of Jarratt’s method with sixth-order convergence. Appl. Math. Comput. 190, 1432–1437 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Traub, J.F.: Iterative methods for the solution of equations. Chelsea, New York (1982)

    MATH  Google Scholar 

  6. Kou, J., Li, Y., Wang, X.: Some modifications of Newton’s method with fifth-order convergence. J. Comput. Appl. Math. 209, 146–152 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mir, N.A., Zaman, T.: Some quadrature based three-step iterative methods for non-linear equations. Appl. Math. Comput. 193, 366–373 (2007)

    Article  MathSciNet  Google Scholar 

  9. Ham, Y., Chun, C., Lee, S.-G.: Some higher-order modifications of Newton’s method for solving nonlinear equations. J. Comput. Appl. Math. 222, 477–486 (2008). doi:10.1016/j.cam.2007.11.018

    Google Scholar 

  10. Grau, M., Noguera, M.: A variant of Cauchy’s Method with Accelerated Fifth-order Convergence. Math. Lett. 17, 509–517 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ezquerro, J.A., Hernández, M.A.: An optimization of Chebyshev’s method. J. Complex. 25, 343–361 (2009). doi:10.1016/j.jco.2009.04.001

    Article  MATH  Google Scholar 

  12. Amat, S., Hernández, M.A., Romero, N.: A modified Chebyshev’s iterative method with at least sixth order of convergence. Appl. Math. Comput. 206, 164–174 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bruns, D.D., Bailey, J.E.: Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chem. Eng. Sci. 32, 257–264 (1977)

    Article  Google Scholar 

  14. Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: Chebyshev-like methods and quadratic equations. Rev. Anal. Numér. Théor. Approx. 28, 23–35 (2000)

    Google Scholar 

  15. Potra, F.A., Pták, V.: Nondiscrete Introduction and Iterative Processes. Research Notes in Mathematics, vol 103. Pitman, Boston (1984)

    Google Scholar 

  16. Homeier, H.H.H.: On Newton-type methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gautschi, W.: Numerical Analisis: An introduction. Birkhäuser, Basel (1997)

    MATH  Google Scholar 

  18. Danby, J.M.A., Burkardt, T.M.: The solution of Kepler’s equation, I. Celest. Mech. 31, 95–107 (1983)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eulalia Martínez.

Additional information

This research was supported by Ministerio de Ciencia y Tecnología MTM2007-64477

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordero, A., Hueso, J.L., Martínez, E. et al. Efficient three-step iterative methods with sixth order convergence for nonlinear equations. Numer Algor 53, 485–495 (2010). https://doi.org/10.1007/s11075-009-9315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9315-y

Keywords

Navigation