Abstract
Grid adaptation in two-point boundary value problems is usually based on mapping a uniform auxiliary grid to the desired nonuniform grid. Here we combine this approach with a new control system for constructing a grid density function ϕ(x). The local mesh width Δx j + 1/2 = x j + 1 − x j with 0 = x 0 < x 1 < ... < x N = 1 is computed as Δx j + 1/2 = ε N / φ j + 1/2, where \(\{\varphi_{j+1/2}\}_0^{N-1}\) is a discrete approximation to the continuous density function ϕ(x), representing mesh width variation. The parameter ε N = 1/N controls accuracy via the choice of N. For any given grid, a solver provides an error estimate. Taking this as its input, the feedback control law then adjusts the grid, and the interaction continues until the error has been equidistributed. Digital filters may be employed to process the error estimate as well as the density to ensure the regularity of the grid. Once ϕ(x) is determined, another control law determines N based on the prescribed tolerance \({\textsc {tol}}\). The paper focuses on the interaction between control system and solver, and the controller’s ability to produce a near-optimal grid in a stable manner as well as correctly predict how many grid points are needed. Numerical tests demonstrate the advantages of the new control system within the bvpsuite solver, ceteris paribus, for a selection of problems and over a wide range of tolerances. The control system is modular and can be adapted to other solvers and error criteria.
Similar content being viewed by others
References
Ascher, U., Bader, U.: A new basis implementation for a mixed order boundary value ODE solver. SIAM Sci. J. Stat. Comput. 8, 483–500 (1987)
Ascher, U., Christiansen, J., Russell, R.D.: A collocation solver for mixed order systems of boundary value problems. Math. Comput. 33, 659–679 (1978)
Ascher, U., Christiansen, J., Russell, R.D.: Collocation Software for boundary-value ODEs. ACM Trans. Math. Softw. 7, 209–222 (1981)
Ascher, U., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1988)
Auzinger, W., Koch, O., Weinmüller, E.B.: Efficient collocation schemes for singular boundary value problems. Numer. Algorithms 31, 5–25 (2002)
Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E.B.: A collocation code for boundary value problems in ordinary differential equations. Numer. Algorithms 33, 27–39 (2003)
Auzinger, W., Koch, O., Pulverer, G., Weinmüller, E.B.: Performance of collocation software for singular BVPs. Technical Report, ANUM Preprint No. 4/04, Vienna University of Technology, Austria (2004)
Auzinger, W., Koch, O., Weinmüller, E.B.: Efficient mesh selection for collocation methods applied to singular BVPs. J. Comput. Appl. Math. 180, 213–227 (2005)
Babuska, I., Rheinboldt, W.C.: Analysis of optimal finite-elemt meshes in R1, Math. Comput. 33, 435–463 (1979)
Beckett, G., Mackenzie, J.A., Ramage, A., Slone, D.M.: On the numerical solution of one-dimensional pdes using adaptive methods based on equidistribution. Comput. J. Phys. 167, 372–392 (2001)
de Boor, C.: Good approximations by splines with variable knots. In: Meir, A., Sharma, A. (eds.) Spline Functions and Approximation Theory, pp. 57–73. Birkhüser, Basel (1973)
Budd, C.J., Koch, O., Weinmüller, E.B.: Self-similar blow-up in nonlinear PDEs. AURORA Technical Report, TR-2004-15, Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria (2004). Available at http://www.vcpc.univie.ac.at/aurora/publications/.
Budd, C.J., Koch, O., Weinmüller, E.B.: Computation of self-similar solution profiles for the nonlinear Schrödinger equation. Computing 77, 335–346 (2006)
Budd, C.J., Koch, O., Weinmüller, E.B.: From nonlinear PDEs to singular ODEs. Appl. Numer. Math. 56, 413–422 (2006)
Carey, G.F., Dinh, H.T.: Grading functions and mesh redistribution. SIAM J. Numer. Anal. 22, 1028–1040 (1985)
Chen, K.: Error equidistribution and mesh adaptation. SIAM J. Sci. Comput. 15, 798–818 (1994)
Christara, C.C., Ng, K.S.: Optimal quadratic and cubic spline collocation on nonuniform partitions. Computing 76, 227–257 (2006)
Christara, C.C., Ng, K.S.: Adaptive techniques for spline collocation. Computing 76, 259–277 (2006)
De Hoog, F., Weiss, R.: Difference methods for boundary value problems with a singularity of the first kind. SIAM J. Numer. Anal. 13, 775–813 (1976)
Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDEs) based on the equidistribution principle. SIAM J. Numer. Anal. 31, 709 (1994)
Huang, W.: Variational mesh adaptation: isotropy and equidistribution. J. Comput. Phys. 174, 903–924 (2001)
Huang, W., Sun, W.: Variational mesh adaptation II: error estimates and monitor functions. SIAM J. Numer. Anal. 13, 775–813 (1976)
Ilie, S., Söderlind, G., Corless, R.: Adaptivity and computational complexity in the numerical solution of ODEs. J. Complex. 24, 341–361 (2008)
Kierzenka, J., Shampine, L.: A BVP solver that controls residual and error. JNAIAM Numer. J. Anal. Indust. Math. 3, 27–41 (2008)
Kitzhofer, G.: Numerical treatment of implicit singular BVPs. Ph.D. thesis, Institute for Analysis and Scientific Computing, Vienna University of Technology, Austria
Kitzhofer, G., Koch, O., Weinmüller, E.B.: Collocation methods for the computation of bubble-type solutions of a singular boundary value problem in hydrodynamics. J. Sci. Comp. 32, 411–424 (2007). Available at http://www.math.tuwien.ac.at/~ewa
Pereyra, V., Sewell, E.G.: Mesh selection for discrete solution of boundary problems in ordinary differential equations. Numer. Math. 23, 261–268 (1975)
Polster, W.: Ein Algorithmus zur Gittersteuerung bei Kollokationsverfahren für singuläre Randwertprobleme. Master thesis, Institute for Applied Mathematics and Numerical Analysis, Vienna University of Technology, Austria (2001)
Pryce, J.D.: On the convergence of iterated remeshing. IMA J. Numer. Anal. 9, 315–335 (1989)
Rachunková, I., Koch, O., Pulverer, G., Weinmüller, E.B.: On a singular boundary value problem arising in the theory of shallow membrane caps. J. Math. Anal. Appl. 332, 523–541 (2007)
Rentrop, P.: Eine Taylorreihenmethode zur numerischen Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie, TUM-MATH-7733, Technische Universität München (1977)
Russell, R.D., Christiansen, J.: Adaptive mesh selection strategies for solving boundary value problems. SIAM J. Numer. Anal. 15, 59–80 (1978)
Shampine, L., Kierzenka, J., Reichelt, M.: Solving boundary value problems for ordinary differential equations in Matlab with bvp4c (2000). Available at ftp://ftp.mathworks.com/pub/doc/papers/bvp/
Shampine, L., Kierzenka, J.: A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Softw. 27, 299–315 (2001)
Shampine, L., Muir, P., Xu, H.: A user-friendly Fortran BVP solver. Available at http://cs.smu.ca/~muir/BVP_SOLVER_Files/ShampineMuirXu2006.pdf
Söderlind, G.: Digital filters in adaptive time-stepping. ACM Trans. Math. Softw. 29, 1–26 (2003)
Söderlind, G.: Time-step selection algorithms: adaptivity, control and signal processing. Appl. Numer. Math. 56, 488–502 (2006)
Stockie, J.M., Mackenzie, J.A., Russell, R.D.: A moving mesh method for one-dimensional hyperbolic conservation laws. SISC 22, 1791–1813 (2001)
Tang, H., Tang, T.: Adaptive methods for one- and two-dimensional hyperbolic conservation laws. SINUM 41, 487–515 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
Gustaf Söderlind was supported by Swedish Research Council grant VR 621-2005-3129.
Rights and permissions
About this article
Cite this article
Pulverer, G., Söderlind, G. & Weinmüller, E. Automatic grid control in adaptive BVP solvers. Numer Algor 56, 61–92 (2011). https://doi.org/10.1007/s11075-010-9374-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-010-9374-0