Skip to main content
Log in

Matrix decomposition algorithms for elliptic boundary value problems: a survey

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We provide an overview of matrix decomposition algorithms (MDAs) for the solution of systems of linear equations arising when various discretization techniques are applied in the numerical solution of certain separable elliptic boundary value problems in the unit square. An MDA is a direct method which reduces the algebraic problem to one of solving a set of independent one-dimensional problems which are generally banded, block tridiagonal, or almost block diagonal. Often, fast Fourier transforms (FFTs) can be employed in an MDA with a resulting computational cost of O(N 2 logN) on an N × N uniform partition of the unit square. To formulate MDAs, we require knowledge of the eigenvalues and eigenvectors of matrices arising in corresponding two–point boundary value problems in one space dimension. In many important cases, these eigensystems are known explicitly, while in others, they must be computed. The first MDAs were formulated almost fifty years ago, for finite difference methods. Herein, we discuss more recent developments in the formulation and application of MDAs in spline collocation, finite element Galerkin and spectral methods, and the method of fundamental solutions. For ease of exposition, we focus primarily on the Dirichlet problem for Poisson’s equation in the unit square, sketch extensions to other boundary conditions and to more involved elliptic problems, including the biharmonic Dirichlet problem, and report extensions to three dimensional problems in a cube. MDAs have also been used extensively as preconditioners in iterative methods for solving linear systems arising from discretizations of non-separable boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abakumov, A.A., Yeremin, Y.A., Kuznetsov, Y.A.: Efficient fast direct method of solving Poisson’s equation on a parallelepiped and its implementation in an array processor. Sov. J. Numer. Anal. Math. Model. 3, 1–20 (1988)

    Article  MATH  Google Scholar 

  2. Abushama, A.A., Bialecki, B.: Modified nodal cubic spline collocation for biharmonic equations. Numer. Algorithms 43, 331–353 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abushama, A.A., Bialecki, B.: Modified nodal cubic spline collocation for Poisson’s equation. SIAM J. Numer. Anal. 46, 397–418 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amodio, P., Cash, J.R., Roussos, G., Wright, R.W., Fairweather, G., Gladwell, I., Kraut, G.L., Paprzycki, M.: Almost block diagonal linear systems: sequential and parallel solution techniques, and applications. Numer. Linear Algebra Appl. 7, 275–317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anastassiu, H.T., Lymperopoulos, D.G., Kaklamani, D.I.: Accuracy analysis and optimization of the method of auxiliary sources (MAS) for scattering by a circular cylinder. IEEE Trans. Antennas Propag. 52, 1541–1547 (2004)

    Article  Google Scholar 

  6. Anastassiu, H.T., Volakis, J.L., Filipovic, D.S.: Integral equation modeling of cylindrically periodic scatterers in the interior of a cylindrical waveguide. IEEE Trans. Microwave Theor. Tech. 46, 1713–1720 (1998)

    Article  Google Scholar 

  7. Archer, D.: Some collocation methods for differential equations. Ph.D. thesis, Rice University, Houston, Texas (1973)

  8. Archer, D.: An O(h 4) cubic spline collocation method for quasilinear parabolic equations. SIAM J. Numer. Anal. 14, 620–637 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Auteri, F., Parolini, N., Quartapelle, L.: Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers. J. Comput. Phys. 185, 427–444 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Auteri, F., Quartapelle, L.: Galerkin spectral method for the vorticity and stream function equations. J. Comput. Phys. 149, 306–332 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Auteri, F., Quartapelle, L.: Galerkin–Legendre spectral method for the 3D Helmholtz equation. J. Comput. Phys. 161, 454–483 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Auteri, F., Quartapelle, L.: Spectral elliptic solvers in a finite cylinder. Commun. Comput. Phys. 5, 426–441 (2009)

    MathSciNet  Google Scholar 

  13. Auteri, F., Quartapelle, L., Vigevano, L.: Accurate ω − ψ spectral solution of the singular driven cavity problem. J. Comput. Phys. 180, 597–615 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Azaiez, M., Shen, J., Xu, C., Zhuang, Q.: A Laguerre-Legendre spectral method for the Stokes problem in a semi-infinite channel. SIAM J. Numer. Anal. 47, 271–292 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bade, F., Haldenwang, P.: High order scheme for thermally driven flows in an open channel. Comput. Fluids 27, 273–290 (1999)

    Article  Google Scholar 

  16. Banegas, A.: Fast Poisson solvers for problems with sparsity. Math. Comput. 32, 441–446 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bank, R.E.: Efficient algorithms for solving tensor product finite element equations. Numer. Math. 31, 49–61 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 27, 553–574 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ben–Artzi, M., Croisille, J.-P., Fishelov, D.: A fast direct solver for the biharmonic problem in a rectangular grid. SIAM J. Sci. Comput. 31, 303–333 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bennett, K.R.: Parallel collocation methods for boundary value problems. Ph.D. thesis, University of Kentucky, Lexington, Kentucky (1991)

  21. Bialecki, B.: A fast domain decomposition Poisson solver on a rectangle for Hermite bicubic orthogonal spline collocation. SIAM J. Numer. Anal. 30, 425–434 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Bialecki, B.: A fast solver for the orthogonal spline collocation solution of the biharmonic Dirichlet problem on rectangles. J. Comput. Phys. 191, 601–621 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bialecki, B.: Piecewise Hermite bicubic orthogonal spline collocation for Poisson’s equation on a disk (preprint)

  24. Bialecki, B., Cai, X.-C., Dryja, M., Fairweather, G.: An additive Schwarz algorithm for piecewise Hermite bicubic orthogonal spline collocation. In: Domain Decomposition Methods in Science and Engineering (Como 1992). Contemp. Math., vol. 157, pp. 237–244. Amer. Math. Soc., Providence, Rhode Island (1994)

  25. Bialecki, B., Dillery, D.S.: Fourier analysis of Schwarz alternating methods for piecewise Hermite bicubic orthogonal spline collocation. BIT 33, 634–646 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bialecki, B., Dryja, M.: A nonoverlapping domain decomposition method for orthogonal spline collocation problems. SIAM J. Numer. Anal. 41, 1709–1728 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bialecki, B., Fairweather, G.: Matrix decomposition algorithms for separable elliptic boundary value problems in two dimensions. J. Comput. Appl. Math. 46, 369–386 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bialecki, B., Fairweather, G.: Matrix decomposition algorithms in orthogonal spline collocation for separable elliptic boundary value problems. SIAM J. Sci. Comput. 16, 330–347 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for partial differential equations. J. Comput. Appl. Math. 128, 55–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bialecki, B., Fairweather, G., Bennett, K.R.: Fast direct solvers for piecewise Hermite bicubic orthogonal spline collocation equations. SIAM J. Numer. Anal. 29, 156–173 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for modified spline collocation for Helmholtz problems. SIAM J. Sci. Comput. 24, 1733–1753 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Bialecki, B., Fairweather, G., Karageorghis, A.: Optimal superconvergent one step nodal cubic spline collocation methods. SIAM J. Sci. Comput. 27, 575–598 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Bialecki, B., Fairweather, G., Karageorghis, A., Nguyen, Q.N.: On the formulation and implementation of optimal superconvergent one step quadratic spline collocation methods for elliptic problems. Technical Report TR/18/2007, Department of Mathematics and Statistics, University of Cyprus (2007)

  34. Bialecki, B., Fairweather, G., Karageorghis, A., Nguyen, Q.N.: Optimal superconvergent one step quadratic spline collocation methods for Helmholtz equations. In: Jorgensen, P., Shen, X., Shu, C.-W., Yan, N. (eds.) Recent Advances in Computational Science, pp. 156–174. World Scientific, Singapore (2008)

    Google Scholar 

  35. Bialecki, B., Fairweather, G., Karageorghis, A., Nguyen, Q.N.: Optimal superconvergent one step quadratic spline collocation methods. BIT 48, 449–472 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Bialecki, B., Fairweather, G., Knudson, D.B., Lipman, D.A., Nguyen, Q.N., Sun, W., Weinberg, G.M.: Matrix decomposition algorithms for the finite element Galerkin method with piecewise Hermite cubics. Numer. Algorithms 52, 1–23 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bialecki, B., Fairweather, G., Remington, K.A.: Fourier methods for piecewise Hermite bicubic orthogonal spline collocation. East-West J. Numer. Math. 2, 1–20 (1994)

    MATH  MathSciNet  Google Scholar 

  38. Bialecki, B., Karageorghis, A.: A Legendre spectral collocation method for the biharmonic Dirichlet problem. M2AN Math. Model. Numer. Anal. 34, 637–662 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  39. Bialecki, B., Karageorghis, A.: A Legendre spectral Galerkin method for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 22, 1549–1569 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Bialecki, B., Karageorghis, A.: Legendre Gauss spectral collocation for the Helmholtz equation on a rectangle. Numer. Algorithms 36, 203–227 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Bialecki, B., Karageorghis, A.: A nonoverlapping domain decomposition method for Legendre spectral collocation problems. J. Sci. Comput. 32, 373–409 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Bialecki, B., Karageorghis, A.: Spectral Chebyshev-Fourier collocation for the Helmholtz and variable coefficient equations in a disk. J. Comput. Phys. 227, 8588–8603 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Bialecki, B., Karageorghis, A.: Spectral Chebyshev collocation for Poisson and biharmonic equations (submitted)

  44. Bialecki, B., Remington, K.A.: Fourier matrix decomposition methods for the least squares solution of singular Neumann and periodic Hermite bicubic collocation problems. SIAM J. Sci. Comput. 16, 431–451 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Bialecki, B., Wang, Z.: Modified nodal cubic spline collocation for elliptic equations (submitted)

  46. Bickley, W.S.: Finite difference formulae for the square lattice. Q. J. Mech. Appl. Math. 1, 35–42 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  47. Bickley, W.S., McNamee, J.: Matrix and other direct methods for the solution of systems of linear difference equations. Philos. Trans. R. Soc. Lond., Ser. A. 252, 69–131 (1960)

    MathSciNet  Google Scholar 

  48. Bjøntegaard, T., Maday, Y., Rønquist, E.M.: Fast tensor-product solvers: partially deformed three-dimensional domains. J. Sci. Comput. 39, 28–48 (2009)

    Article  MathSciNet  Google Scholar 

  49. Bjørstad, P.E.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM J. Numer. Anal. 20, 59–71 (1983)

    Article  MathSciNet  Google Scholar 

  50. Bjørstad, P.E., Tjøstheim, B.P.: Efficient algorithms for solving a fourth-order equation with the spectral-Galerkin method. SIAM J. Sci. Comput. 18, 621–632 (1997)

    Article  MathSciNet  Google Scholar 

  51. Bjørstad, P.E., Tjøstheim, B.P.: High precision solutions of two fourth order eigenvalue problems. Computing 63, 97–107 (1999)

    Article  MathSciNet  Google Scholar 

  52. Boisvert, R.F.: Families of high order accurate discretizations of some elliptic problems. SIAM J. Sci. Statist. Comput. 2, 268–284 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  53. Boisvert, R.F.: High order compact difference formulas for elliptic problems with mixed boundary conditions. In: Vichnevetsky, R., Stepleman, R.S. (eds.) Advances in Computer Methods for Partial Differential Equations IV, pp. 193–199. IMACS, Rutgers University, New Brunswick, New Jersey (1981)

    Google Scholar 

  54. Boisvert, R.F.: A fourth-order accurate fast direct method for the Helmholtz equation. In: Birkhoff, G., Schoenstadt, A. (eds.) Elliptic Problem Solvers II, pp. 35–44. Academic, Orlando, Florida (1984)

    Google Scholar 

  55. Boisvert, R.F.: A fourth-order-accurate Fourier method for the Helmholtz equation in three dimensions. ACM Trans. Math. Softw. 13, 221–234 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  56. Boisvert, R.F.: Algorithm 651: HFFT—high-order fast-direct solution of the Helmholtz equation. ACM Trans. Math. Softw. 13, 235–249 (1987)

    Article  MathSciNet  Google Scholar 

  57. de Boor, C.: The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines. Ph.D. thesis, University of Michigan, Ann Arbor, Michigan (1966)

  58. Bottcher, C., Strayer, M.R.: The basis spline method and associated techniques. In: Bottcher, C., Strayer, M.R., McGrory, J.B. (eds.) Computational Atomic and Nuclear Physics, pp. 217–240. World Scientific, Singapore (1990)

    Google Scholar 

  59. Bottcher, C., Strayer, M.R.: Spline methods for conservation equations. In: Lee, D., Robinson, A.R., Vichnevetsky, R. (eds.) Computational Acoustics, vol. 2, pp. 317–338. Elsevier, Amsterdam (1993)

    Google Scholar 

  60. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. 2nd edn. Dover, New York (2001)

    MATH  Google Scholar 

  61. Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equation. SIAM J. Numer. Anal. 7, 627–656 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  62. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, New York (2006)

    MATH  Google Scholar 

  63. Chan, T.F., Resasco, D.C.: A domain–decomposed fast Poisson solver on a rectangle. SIAM J. Sci. Statist. Comput. 8, 14–26 (1987)

    Article  MathSciNet  Google Scholar 

  64. Chan, T.F., Resasco, D.C.: Errata: a domain–decomposed fast Poisson solver on a rectangle. SIAM J. Sci. Statist. Comput. 8, 457 (1987)

    Article  MathSciNet  Google Scholar 

  65. Chen, H.B., Nandakumar, K., Finlay, W.H., Ku, H.C.: Three-dimensional viscous flow through a rotating channel: a pseudospectral matrix method approach. Int. J. Numer. Methods Fluids 23, 379–396 (1996)

    Article  MATH  Google Scholar 

  66. Chen, H., Su, Y., Shizgal, B.D.: A direct spectral collocation Poisson solver in polar and cylindrical coordinates. J. Comput. Phys. 160, 453–469 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  67. Chen, Y., Yi, N., Liu, W.: A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations. SIAM J. Numer. Anal. 46, 2254–2275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  68. Christara, C.C.: Quadratic spline collocation methods for elliptic partial differential equations. BIT 34, 33–61 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  69. Christara, C.C., Ng, K.S.: Fast Fourier transform solvers and preconditioners for quadratic spline collocation. BIT 42, 702–739 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  70. Constas, A.: Fast Fourier transform solvers for quadratic spline collocation. M.Sc. thesis, Department of Computer Science, University of Toronto (1996)

  71. Daniel, J.W., Swartz, B.K.: Extrapolated collocation for two-point boundary value problems using cubic splines. J. Inst. Math. Appl. 16, 161–174 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  72. Doha, E.H.: Efficient Jacobi Galerkin methods for second- and fourth-order elliptic problems. J. Egypt. Math. Soc. 16, 161–213 (2008)

    MATH  MathSciNet  Google Scholar 

  73. Doha, E.H., Abd-Elhameed, W.M.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548–571 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  74. Doha, E.H., Abd-Elhameed, W.M., Bhrawy, A.H.: Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of 2nth-order linear differential equations. Appl. Math. Model. 33, 1982–1996 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  75. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of the integrated forms of second-order equations using ultraspherical polynomials. Numer. Algorithms 42, 137–164 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  76. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of second-order differential equations using Jacobi polynomials. ANZIAM J. 48, 361–386 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  77. Doha, E.H., Bhrawy, A.H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials. Appl. Numer. Math. 58, 1224–1244 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  78. Doha, E.H., Bhrawy, A.H., Abd-Elhameed, W.M.: Jacobi spectral Galerkin method for elliptic Neumann problems. Numer. Algorithms 50, 67–91 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  79. Dorr, F.W. (1970). The direct solution of the discrete Poisson equation on a rectangle. SIAM Rev. 12, 248–263 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  80. Dui, K., Fairweather, G., Nguyen, Q.N., Sun, W.: Matrix decomposition algorithms for the C 0–quadratic finite element Galerkin method. BIT 49, 509–526 (2009)

    Article  MathSciNet  Google Scholar 

  81. Dyksen, W.R.: Tensor product generalized ADI methods for separable elliptic problems. SIAM J. Numer. Anal. 24, 59–76 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  82. Egerváry, E.: Űber eine Methode zur numerischen Lősung der Poissonschen Differenzengleichung für beliebige Gebeite. Acta. Math. Acad. Sci. Hungar. 11, 341–361 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  83. Ehrenstein, U., Peyret, R.: A Chebyshev collocation method for the Navier-Stokes equations with application to double-diffusive convection. Int. J. Numer. Methods Fluids 9, 427–452 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  84. Elbardary, E.M.E.: Efficient Chebyshev-Petrov-Galerkin method for solving second order equations. J. Sci. Comput. 34, 113–126 (2008)

    Article  MathSciNet  Google Scholar 

  85. Elman, H.C., O’Leary, D.P.: Efficient iterative solution of the three–dimensional Helmholtz equation. J. Comput. Phys. 142, 163–181 (1998)

    Article  MATH  Google Scholar 

  86. Ernst, O., Golub, G.H.: A domain decomposition approach to solving the Helmholtz equation with a radiation boundary condition. In: Domain Decomposition Methods in Science and Engineering (Como, 1992). Contemp. Math., vol. 157, pp. 177–192. Amer. Math. Soc., Providence, Rhode Island (1994)

    Google Scholar 

  87. Fairweather, G.: Finite Element Galerkin Methods for Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 34. Marcel Dekker, New York (1978)

    MATH  Google Scholar 

  88. Fairweather, G., Bennett, K.R., Bialecki, B.: Parallel matrix decomposition algorithms for separable elliptic boundary value problems. In: Noye, B.J., Benjamin, B.R., Colgan, L.H. (eds.) Computational Techniques and Applications: CTAC-91, Proceedings of the 1991 International Conference on Computational Techniques and Applications, Adelaide, South Australia, July 1991, pp. 63–74. Computational Mathematics Group, Australian Mathematical Society (1992)

  89. Fairweather, G., Gladwell, I.: Algorithms for almost block diagonal linear systems. SIAM Rev. 46, 49–58 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  90. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  91. Fairweather, G., Karageorghis, A., Maack, J.: Compact optimal quadratic spline collocation methods for Poisson and Helmholtz problems: formulation and numerical verification. Technical Report TR/03/2010, Department of Mathematics and Statistics, University of Cyprus (2010)

  92. Fairweather, G., Karageorghis, A., Smyrlis, Y.-S.: A matrix decomposition MFS algorithm for axisymmetric biharmonic problems. Adv. Comput. Math. 23, 55–71 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  93. Fyfe, D.J.: The use of cubic splines in the solution of two-point boundary value problems. Comput. J. 13, 188–192 (1969)

    Article  MathSciNet  Google Scholar 

  94. Garba, A.: A mixed spectral/wavelet method for the solution of the Stokes problem. J. Comput. Phys. 145, 297–315 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  95. Golub, G.H., Huang, L.C., Simon, H., Tang, W.-P.: A fast Poisson solver for the finite difference solution of the incompressible Navier Stokes equations. SIAM J. Sci. Comput. 19, 1606–1624 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  96. Gottlieb, D., Lustman, L.: The spectrum of the Chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal. 20, 909–921 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  97. Guessous, L.: A pseudo-spectral numerical scheme for the simulation of steady and oscillating wall-bounded flows. Numer. Heat Transf., B 45, 135–157 (2004)

    Article  Google Scholar 

  98. Gustafsson, B., Hemmingsson–Frändén, L.: A fast domain decomposition high order Poisson solver. J. Sci. Comput. 14, 223–243 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  99. Haidvogel, D.B., Zang, T.: The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials. J. Comput. Phys. 30, 167–180 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  100. Haldenwang, P., Labrosse, G., Abboudi, S., Deville, M.: Chebyshev 3–D spectral and 2–D pseudospectral solvers for the Helmholtz equation. J. Comput. Phys. 55, 115–128 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  101. Heikkola, E., Kuznetsov, Y.A., Lipnikov, K.N.: Fictitious domain methods for the numerical solution of three–dimensional acoustic scattering problems. J. Comput. Acoust. 7, 161–183 (1999)

    Article  MathSciNet  Google Scholar 

  102. Heikkola, E., Rossi, T., Toivanen, J.: Fast direct solution of the Helmholtz equation with a perfectly matched or an absorbing boundary condition. Int. J. Numer. Methods Eng. 57, 2007–2025 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  103. Heinrichs, W.: Improved condition number for spectral methods. Math. Comput. 53, 103–119 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  104. Heinrichs, W.: Spectral methods with sparse matrices. Numer. Math. 56, 25–41 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  105. Heinrichs, W.: Algebraic spectral multigrid methods. Comput. Methods Appl. Mech. Eng. 80, 281–286 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  106. Heinrichs, W.: A stabilized treatment of the biharmonic operator with spectral methods. SIAM J. Sci. Comput. 12, 1162–1172 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  107. Hendrickx, J., Van Barel, M.: A Kronecker product variant of the FACR method for solving the generalized Poisson equation. J. Comput. Appl. Math. 140, 369–380 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  108. Hendrickx, J., Vandebril, R., Van Barel, M.: A fast direct method for solving the two–dimensional Helmholtz equation, with Robbins boundary conditions. In: Fast Algorithms for Structured Matrices: Theory and Applications. Contemp. Math., vol. 323, pp. 187–204. Amer. Math. Soc., Providence, Rhode Island (2003)

    Google Scholar 

  109. Hill, R.W., Ball, K.S.: Direct numerical simulations of turbulent forced convection between counter-rotating disks. Int. J. Heat Fluid Flow 20, 208–221 (1999)

    Article  Google Scholar 

  110. Hill, R.W., Ball, K.S.: Parallel implementation of a Fourier-Chebyshev collocation method for incompressible fluid flow and heat transfer. Numer. Heat Transf., B 36, 309–329 (1999)

    Article  Google Scholar 

  111. Ho, A.C., Ng, M.K.: Iterative methods for Robbins problem. Appl. Math. Comput. 165, 103–125 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  112. Hockney, R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. J. Assoc. Comput. Mach. 12, 95–113 (1965)

    MATH  MathSciNet  Google Scholar 

  113. Houstis, E.N., Christara, C.C., Rice, J.R.: Quadratic-spline collocation methods for two-point boundary value problems. Int. J. Numer. Methods Eng. 26, 935–952 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  114. Houstis, E.N., Vavalis, E.A., Rice, J.R.: Convergence of O(h 4) cubic spline collocation methods for elliptic partial differential equations. SIAM J. Numer. Anal. 25, 54–74 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  115. Hu, Y., Ling, X.: Preconditioners for elliptic problems via non–uniform meshes. Appl. Math. Comput. 181, 1182–1198 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  116. Hyman, M.A.: Non iterative numerical solution of boundary value problems. Appl. Sci. Res., B 2, 325–351 (1951)

    Article  MathSciNet  Google Scholar 

  117. Ierley, G.R.: A class of sparse spectral operators for inversion of powers of the Laplacian in N dimensions. J. Sci. Comput. 12, 57–73 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  118. Ito, K., Qiao, Z., Toivanen, J.: A domain decomposition solver for acoustic scattering by elastic objects in layered media. J. Comput. Phys. 227, 8685–8698 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  119. Julien, K., Watson, M.: Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods. J. Comput. Phys. 228, 1480–1503 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  120. Jun, S., Kang, S., Kwon, Y.: A direct solver for the Legendre tau approximation for the two-dimensional Poisson problem. J. Appl. Math. Comput. 23, 25–42 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  121. Kadalbajoo, M.K., Bharadwaj, K.K.: Fast elliptic solvers—an overview. Appl. Math. Comput. 14, 331–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  122. Karageorghis, A.: Efficient MFS algorithms in regular polygonal domains. Numer. Algorithms 50, 215–240 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  123. Karageorghis, A.: Efficient Kansa-type MFS algorithm for elliptic problems. Numer. Algorithms (to appear). doi:10.1007/s11075-009-9334-8

  124. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: Matrix decomposition RBF algorithm for solving 3d elliptic problems. Eng. Anal. Bound. Elem. 33, 1368–1373 (2009)

    Article  MathSciNet  Google Scholar 

  125. Karageorghis, A., Kyza, I.: Efficient algorithms for approximating particular solutions of elliptic equations using Chebyshev polynomials. Commun. Comput. Phys. 2, 501–521 (2007)

    MATH  MathSciNet  Google Scholar 

  126. Karageorghis, A., Smyrlis, Y.-S.: Matrix decomposition MFS algorithms for elasticity and thermo-elasticity problems in axisymmetric domains. J. Comput. Appl. Math. 206, 774–795 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  127. Karageorghis, A., Smyrlis, Y.-S.: Matrix decomposition algorithms related to the MFS for axisymmetric problems. In: Manolis, G.D., Polyzos, D. (eds.) Recent Advances in Boundary Element Methods, pp. 223–237. Springer, New York (2009)

    Chapter  Google Scholar 

  128. Kaufman, L., Warner, D.: High–order, fast–direct methods for separable elliptic equations. SIAM J. Numer. Anal. 21, 674–694 (1984)

    Article  MathSciNet  Google Scholar 

  129. Kaufman, L., Warner, D.: Algorithm 685: a program for solving separable elliptic equations. ACM Trans. Math. Softw. 16, 325–351 (1990)

    Article  MATH  Google Scholar 

  130. Kegley, D.R., Jr., Oberacker, V.E., Strayer, M.R., Umar, A.S., Wells, J.C.: Basis spline collocation method for solving the Schrödinger equation in axillary symmetric systems. J. Comput. Phys. 128, 197–208 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  131. Knudson, D.B.: A piecewise Hermite bicubic finite element Galerkin method for the biharmonic Dirichlet problem. Ph.D. thesis, Colorado School of Mines, Golden, Colorado (1997)

  132. Kurz, S., Rain, O., Rjasanow, S.: Application of the adaptive cross approximation technique for the coupled BE–FE solution of symmetric electromagnetic problems. Comput. Mech. 32, 423–429 (2003)

    Article  MATH  Google Scholar 

  133. Kuznetsov, Yu.A.: Numerical methods in subspaces. In: Marchuk, G.I. (ed.) Vychislitel’nye Processy i Sistemy II, pp. 265–350. Naukam Moscow (1985) (in Russian)

  134. Kuznetsov, Yu.A., Matsokin, A.M.: On partial solution of systems of linear algebraic equations. Sov. J. Numer. Anal. Math. Model. 4, 453–468 (1989)

    Article  Google Scholar 

  135. Kuznetsov, Yu.A., Rossi, T.: Fast direct method for solving algebraic systems with separable symmetric band matrices. East-West J. Numer. Math. 4, 53–68 (1996)

    MATH  MathSciNet  Google Scholar 

  136. Kwan, Y.-Y.: Efficient spectral-Galerkin methods for polar and cylindrical geometries. Appl. Numer. Math. 59, 170–186 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  137. Kwan, Y.-Y., Shen, J.: An efficient direct parallel spectral-element solver for separable elliptic problems. J. Comput. Phys. 225, 1721–1735 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  138. Lai, M.-C.: A simple compact fourth-order Poisson solver on polar geometry. J. Comput. Phys. 182, 337–345 (2002)

    Article  MATH  Google Scholar 

  139. Lai, M.-C., Tseng, J.-M.: A formally fourth-order accurate compact scheme for 3D Poisson equation in cylindrical and spherical coordinates. J. Comput. Appl. Math. 201, 175–181 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  140. Lai, M.-C., Wang, W.-C.: Fast direct solvers for Poisson equation on 2D polar and spherical geometries. Numer. Methods Partial Differ. Equ. 18, 56–68 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  141. Larsson, E.: A domain decomposition method for the Helmholtz equation in a multilayer domain. SIAM J. Sci. Comput. 120, 1713–1731 (1999)

    Article  MathSciNet  Google Scholar 

  142. Li, B., Fairweather, G., Bialecki, B.: Discrete-time orthogonal spline collocation methods for vibration problems. SIAM J. Numer. Anal. 39, 2045–2065 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  143. Liu, W.B., Shen, J.: A new efficient spectral Galerkin for singular perturbation problems. J. Sci. Comput. 11, 411–437 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  144. Lopez, J.M., Shen, J. : An efficient spectral-projection method for the Navier–Stokes equations in cylindrical geometries. I. Axisymmetric cases. J. Comput. Phys. 139, 308–326 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  145. Lopez, J.M., Marques, F., Shen, J.: An efficient spectral-projection method for the Navier–Stokes equations in cylindrical geometries, II. Three-dimensional cases. J. Comput. Phys. 176, 384–401 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  146. Lou, Z.-M., Bialecki, B., Fairweather, G.: Orthogonal spline collocation methods for biharmonic problems. Numer. Math. 80, 267–303 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  147. Louchart, O., Randriamampianina, A., Leonardi, E.: Spectral domain decomposition technique for the incompressible Navier-Stokes equations. Numer. Heat Transf., A 34, 495–518 (1998)

    Article  Google Scholar 

  148. Lyashko, A.D., Solov’yev, S.I.: Fourier method of solution of FE systems with Hermite elements for Poisson equation. Sov. J. Numer. Anal. Math. Model. 6, 121–129 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  149. Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6, 185–199 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  150. Lynch, R.E., Rice, J.R., Thomas, D.H.: Tensor product analysis of partial difference equations. Bull. Am. Math. Soc. 70, 378–384 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  151. Maack, J.: Quadratic spline collocation for Poisson’s and biharmonic equations in the unit square. M.S. thesis, Colorado School of Mines, Golden, Colorado (2009)

  152. Marinos, A.Th.: On a direct method for solving Helmholtz’s type equations in 3-D rectangular regions. J. Comput. Phys. 88, 62–85 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  153. Martikainen, J., Rossi, T., Toivanen, J.: A fast direct solver for elliptic problems with a divergence constraint. Numer. Linear Algebra Appl. 9, 629–652 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  154. Meyer, A., Rjasanow, S.: An effective direct solution method for certain boundary element equations in 3D. Math. Methods Appl. Sci. 13, 45–53 (1990)

    Article  MathSciNet  Google Scholar 

  155. Mittal, R.: A Fourier–Chebyshev spectral collocation method for simulating flow past spheres and spheroids. Int. J. Numer. Methods Fluids 30, 921–937 (1999)

    Article  MATH  Google Scholar 

  156. Mittal, R.C., Gahlaut, S.: High–order finite–differences schemes to solve Poisson’s equation in polar coordinates. IMA J. Numer. Anal. 11, 261–270 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  157. Nguyen, S., Delcarte, C.: A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives. J. Comput. Phys. 200, 34–49 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  158. Osborne, M.R.: Direct methods for the solution of finite–difference approximations to partial differential equations. Comput. J. 8, 150–156 (1965/1966)

    Article  MathSciNet  Google Scholar 

  159. Petrova, S.: Parallel implementation of fast elliptic solver. Parallel Comput. 12, 1113–1128 (1997)

    Article  MathSciNet  Google Scholar 

  160. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    MATH  Google Scholar 

  161. Pickering, W.M.: Some comments on the solution of Poisson’s equation using Bickley’s formula and fast Fourier transforms. J. Inst. Math. Appl. 19, 337–338 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  162. Pickering, W.M.: An Introduction to Fast Fourier Transform Methods for Partial Differential Equations, with Applications. Research Studies Press, Wiley, New York (1986)

    MATH  Google Scholar 

  163. Pickering, W.M., Harley, P.J.: Iterative solution of the Robbins problem using FFT methods. Int. J. Comput. Math. 45, 243–257 (1992)

    Article  MATH  Google Scholar 

  164. Pickering, W.M., Harley, P.J.: FFT solution of the Robbins problem. IMA J. Numer. Anal. 13, 215–233 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  165. Pickering, W.M., Harley, P.J.: On Robbins boundary conditions, elliptic equations and FFT methods. J. Comput. Phys. 122, 380–383 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  166. Plagne, L., Berthou, J.-Y.: Tensorial basis spline collocation method for Poisson’s equation. J. Comput. Phys. 157, 419–440 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  167. Plessix, R.E., Mulder, W.A.: Separation–of–variables as a preconditioner for an iterative Helmholtz solver. Appl. Numer. Math. 44, 385–400 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  168. Pozo, R., Remington, K.: Fast three–dimensional elliptic solvers on distributed network clusters. In: Joubert, G.R., et al. (eds.) Parallel Computing: Trends and Applications, pp. 201–208. Elsevier, Amsterdam (1994)

    Google Scholar 

  169. Rjasanow, S.: Effective algorithms with circulant–block matrices. Linear Algebra Appl. 202, 55–69 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  170. Rjasanow, S.: Optimal preconditioner for boundary element formulation of the Dirichlet problem in elasticity. Math. Methods Appl. Sci. 18, 603–613 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  171. Rjasanow, S.: The structure of the boundary element matrix for the three-dimensional Dirichlet problem in elasticity. Numer. Linear Algebra Appl. 5, 203–217 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  172. Rossi, T., Toivanen, J.: A nonstandard cyclic reduction method, its variants and stability. SIAM J. Matrix Anal. Appl. 20, 628–645 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  173. Rossi, T., Toivanen, J.: A parallel fast direct solver for block tridiagonal systems with separable matrices of arbitrary dimension. SIAM J. Sci. Comput. 20, 1778–1796 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  174. Russell, R.D., Sun, W.: Spline collocation differentiation matrices. SIAM J. Numer. Anal. 34, 2274–2287 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  175. Samarskii, A.A., Nikolaev, E.S.: Numerical Methods for Grid Equations. Vol. I, Direct Methods. Birkhäuser Verlag, Boston (1989)

    Google Scholar 

  176. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  177. Shen, J.: Efficient spectral-Galerkin method II. Direct solvers of second- and fourth-order equations using Chebyshev polynomials. SIAM J. Sci. Comput. 16, 74–87 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  178. Shen, J.: Efficient spectral-Galerkin methods III. Polar and cylindrical geometries. SIAM J. Sci. Comput. 18, 1583–1604 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  179. Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38, 1113–1133 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  180. Shen, J., Wang, L.-L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5, 195–241 (2009)

    MathSciNet  Google Scholar 

  181. Smyrlis, Y.-S., Karageorghis, A.: A matrix decomposition MFS algorithm for axisymmetric potential problems. Eng. Anal. Bound. Elem. 28, 463–474 (2004)

    Article  MATH  Google Scholar 

  182. Smyrlis, Y.-S., Karageorghis, A.: The method of fundamental solutions for stationary heat conduction problems in rotationally symmetric domains. SIAM J. Sci. Comput. 27, 1193–1512 (2006)

    Article  MathSciNet  Google Scholar 

  183. Stephenson, J.W.: Single cell discretizations of order two and four for biharmonic problems. J. Comput. Phys. 55, 65–80 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  184. Sun, W.: Orthogonal collocation solution of biharmonic equations. Int. J. Comput. Math. 49, 221–232 (1993)

    Article  MATH  Google Scholar 

  185. Sun, W.: A higher order direct method for solving Poisson’s equation on a disc. Numer. Math. 70, 501–506 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  186. Sun, W.: Fast algorithms for high-order spline collocation systems. Numer. Math. 81, 143–160 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  187. Sun, W., Zamani, N.G.: A fast algorithm for solving the tensor product collocation equations. J. Franklin Inst. 326, 295–307 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  188. Swarztrauber, P.N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the direct solution of Poisson’s equation on a rectangle. SIAM Rev. 19, 490–501 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  189. Swarztrauber, P.N.: Fast Poisson solvers. In: Studies in Numerical Analysis, MAA Stud. Math., vol. 24, pp. 319–370. Mathematical Association of America, Washington, DC (1984)

    Google Scholar 

  190. Swarztrauber, P.N., Sweet, R.A.: The direct solution of the discrete Poisson equation on a disk. SIAM J. Numer. Anal. 10, 900–907 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  191. Tsangaris, T., Smyrlis, Y.-S., Karageorghis, A.: A matrix decomposition MFS algorithm for problems in hollow axisymmetric domains. J. Sci. Comput. 28, 31–50 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  192. Tsitsas, N.L., Alivizatos, E.G., Anastassiu, H.T., Kaklamani, D.I.: Optimization of the method of auxiliary sources (MAS) for scattering by an infinite cylinder under oblique incidence. Electromagnetics 25, 39–54 (2005)

    Article  Google Scholar 

  193. Tsitsas, N.L., Alivizatos, E.G., Anastassiu, H.T., Kaklamani, D.I.: Optimization of the method of auxiliary sources (MAS) for oblique incidence scattering by an infinite dielectric cylinder. Electr. Eng. 89, 353–361 (2007)

    Article  Google Scholar 

  194. Tsitsas, N.L., Alivizatos, E.G., Kalogeropoulos, G.H.: A recursive algorithm for the inversion of matrices with circulant blocks. Appl. Math. Comput. 188, 877–894 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  195. Umar, A.S.: Three-dimensional HF and TDHF calculations with the basis-spline collocation technique. In: Bottcher, C., Strayer, M.R., McGrory, J.B. (eds.) Computational Atomic and Nuclear Physics, pp. 377–390. World Scientific, Singapore (1990)

    Google Scholar 

  196. Umar, A.S., Wu, J., Strayer, M.R., Bottcher, C.: Basis-spline collocation method for the lattice solution of boundary value problems. J. Comput. Phys. 93, 426–448 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  197. Vajteršic, M.: Algorithms for Elliptic Problems: Efficient Sequential and Parallel Solvers. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  198. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  199. Vassilevski, P.: Fast algorithm for solving a linear algebraic problem with separation of variables. C. R. Acad. Bulgare Sci. 37, 305–308 (1984)

    MATH  MathSciNet  Google Scholar 

  200. Vassilevski, P.: Fast algorithm for solving discrete Poisson equation in a rectangle. C. R. Acad. Bulgare Sci. 38, 1311–1314 (1985)

    MATH  MathSciNet  Google Scholar 

  201. Vedy, E., Viazzo, S., Schiestel, R.: A high–order finite difference method for incompressible fluid turbulence simulations. Int. J. Numer. Methods Fluids 42, 1155–1188 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  202. Wang, Y., Du, K., Sun, W.: Fast algorithms for the electromagnetic scattering from rectangular cavities. In: Deng, D., Jin, X.-Q., Sun, H.-W. (eds.) Recent Advances in Computational Mathematics, pp. 13–38. International Press, Somerville, Massachusetts, Higher Education Press, Beijing (2008)

  203. Wang, Y., Du, K., Sun, W.: A second–order method for the electromagnetic scattering from a large cavity. Numer. Math. Theor. Methods Appl. 1, 357–382 (2008)

    MathSciNet  Google Scholar 

  204. Wang, Y., Du, K., Sun, W.: Preconditioning iterative algorithm for the electromagnetic scattering from a large cavity. Numer. Linear Algebra Appl. 16, 345–363 (2009)

    Article  MathSciNet  Google Scholar 

  205. Zhang, Q., Shen, J., Wu, C.: A coupled Legendre–Laguerre spectral–element method for the Navier–Stokes equations in unbounded domains. J. Sci. Comput. 42, 1–22 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Fairweather.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bialecki, B., Fairweather, G. & Karageorghis, A. Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer Algor 56, 253–295 (2011). https://doi.org/10.1007/s11075-010-9384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9384-y

Keywords

AMS 2000 Subject Classifications

Navigation