Skip to main content

Advertisement

Log in

Positive definite solution of the matrix equation \(\boldsymbol {X=Q+A^{H}(I\otimes X-C)^{\delta}A}\)

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Consider the nonlinear matrix equation X = Q + A H(I ⊗ X − C)δ A ( δ = − 1 or 0 < |δ| < 1), where Q is an n×n positive definite matrix, C is an mn ×mn positive semidefinite matrix, I is an m×m identity matrix, and A is an arbitrary mn×n matrix. This equation is connected with a certain interpolation problem when δ = − 1. Using the properties of the Kronecker product and the theory for the monotonic operator defined in a normal cone, we prove the existence and uniqueness of the positive definite solution which is contained in the set {X|I ⊗ X > C} under the condition that I ⊗ Q > C. The iterative methods to compute the unique solution is proposed. Numerical examples show that the methods are feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ran, A.C.M., Reurings, M.C.B.: A nonlinear matrix equation connected to interpolation theory. Linear Algebra Appl. 379, 289–302 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Sakhnovich, L.A.: Interpolation Theory and Its Applications, Mathematics and Its Applications, vol. 428. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  3. Sun, J.G.: Perturbation analysis of the matrix equation \(X=Q+A^H(\widehat{X}-C)^{-1}A.\) Linear Algebra Appl. 372, 33–51 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ferrante, A., Levy, B.C.: Hermitian solutions of the equation X = Q + N * X  − 1 N. Linear Algebra Appl. 247, 359–373 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, M.S., Xu, S.F.: Perturbation analysis of the Hermitian positive definite solution of the matrix equation X − A * X  − 2 A = I. Linear Algebra Appl. 394, 39–51 (2005)

    Article  MathSciNet  Google Scholar 

  6. El-Sayed, S.M., Ran, A.C.M.: On an iterative method for solving a class of nonlinear matrix equations. SIAM J. Matrix Anal. Appl. 23, 632–645 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. El-Sayed, S.M., Ramadan, M.A.: On the existence of a positive definite solution of the matrix equation \(X+A^{*}X^{-\frac{1}{2^{m}}}A=I.\) Int. J. Comput. Math. 76, 331–338 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guo, C.H., Lancaster, P.: Iterative solution of two matrix equations. Math. Comput. 68, 1589–1603 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gao, D.J., Zhang, Y.H.: On the Hermitian positive definite solutions of the matrix equation X − A * X q A = Q (q > 0). Math. Numer. Sin. 29, 73–80 (2007)

    MATH  MathSciNet  Google Scholar 

  10. Hasanov, V.I.: Solutions and perturbation theory of nonlinear matrix equations. Ph.D. thesis, Sofia (2003)

  11. Hasanov, V.I.: Positive definite solutions of the matrix equations X±A T X  − q A = Q. Linear Algebra Appl. 404, 166–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ivanov, I.G., Hasanov, V.I., Uhilg, F.: Improved methods and starting values to solve the matrix equations X±A * X  − 1 A = I iteratively. Math. Comput. 74, 263–278 (2004)

    Article  Google Scholar 

  13. Ivanov, I.G.: On positive definite solutions of the family of matrix equations X + A * X  − n A = Q. J. Comput. Appl. Math. 193, 277–301 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, X.G., Gao, H.: On the positive definite solutions of the matrix equation \(X^{s}\pm A^{T}X^{-t}A=I_{n}.\) Linear Algebra Appl. 368, 83–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liao, A.P.: On positive definite solutions of the matrix equation X + A H X  − n A = I. Numer. Math.—A Joural of Chinese Universities 26, 156–161 (2004)

    MATH  Google Scholar 

  16. Liao, A.P., Duan, X.F., Shen, J.R.: Hermitian positive definite solutions of the matrix equation X + A * X  − q A = Q. Math. Numer. Sin. 4, 369–378 (2008)

    MathSciNet  Google Scholar 

  17. Duan, X.F., Liao, A.P., Tang, B.: On the nonlinear matrix equation \(X-\sum^m_{i=1}A^*_iX^{\delta_i}A_i=Q.\) Linear Algebra Appl. 429, 110–121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shi, X.Q., Liu, F.S., Umoh, H., Gibson, F.: Two kinds of nonlinear matrix equations and their corresponding matrix sequences. Linear Algebra Appl. 52, 1–15 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Zhan, X.Z.: Matrix Inequalities. Springer, Berlin (2002)

    MATH  Google Scholar 

  20. Guo, D.J.: Nonlinear Functional Analysis. Shandong Sci. and Tech. Press, Jinan (2001, in Chinese)

    Google Scholar 

  21. Guo, D.J., Lakshmikantham, V.: Nonlinear problems in abstract cones. In: Notes and Reports in Mathematics, in Science and Engineering, vol. 5. Academic, Boston (1988)

    Google Scholar 

  22. Levy, B.C., Frezza, R., Krener, A.J.: Modeling and estimation of discretetime Gaussian reciprocal processes. IEEE Trans. Automat. Contr. 35, 1013–1023 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozhu Yao.

Additional information

The work was supported in part by Natural Science Foundation of Hunan Province (09JJ6012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, G., Liao, A. & Duan, X. Positive definite solution of the matrix equation \(\boldsymbol {X=Q+A^{H}(I\otimes X-C)^{\delta}A}\) . Numer Algor 56, 349–361 (2011). https://doi.org/10.1007/s11075-010-9386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9386-9

Keywords

AMS 2000 Subject Classifications