Skip to main content
Log in

Regularization parameter selection and an efficient algorithm for total variation-regularized positron emission tomography

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In positron emission tomography, image data corresponds to measurements of emitted photons from a radioactive tracer in the subject. Such count data is typically modeled using a Poisson random variable, leading to the use of the negative-log Poisson likelihood fit-to-data function. Regularization is needed, however, in order to guarantee reconstructions with minimal artifacts. Given that tracer densities are primarily smoothly varying, but also contain sharp jumps (or edges), total variation regularization is a natural choice. However, the resulting computational problem is quite challenging. In this paper, we present an efficient computational method for this problem. Convergence of the method has been shown for quadratic regularization functions and here convergence is shown for total variation regularization. We also present three regularization parameter choice methods for use on total variation-regularized negative-log Poisson likelihood problems. We test the computational and regularization parameter selection methods on two synthetic data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S., Fessler, J.: Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms. IEEE Trans. Med. Imag. 22(5), 613–626 (2003)

    Article  Google Scholar 

  2. Bardsley, J.M.: An efficient computational method for total variation-penalized poisson likelihood estimation. Inverse Prob. Sci. Eng. 2(2), 167–185 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bardsley, J.M., Calvetti, D., Somersalo, E.: Hierarchical regularization for edge-preserving reconstruction of PET images. Inverse Probl. 26(3), (2010). doi:10.1088/0266-5611/26/3/035010

  4. Bardsley, J.M., Goldes, J.: An iterative method for edge-preserving map estimation when data-noise is poisson. SIAM J. Sci. Comput. 32(1), 171–185 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardsley, J.M., Goldes, J.: Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation. Inverse Probl. 25(9), (2009). doi:10.1088/0266-5611/25/9/095005

  6. Bardsley, J.M., Luttman, A.: Total variation-penalized poisson likelihood estimation for ill-posed problems. Adv. Comput. Math. 31(1), 35–59 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bardsley, J.M., Vogel, C.R.: A nonnnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 25(4), 1326–1343 (2004)

    Article  MathSciNet  Google Scholar 

  8. Fessler, J.: Penalized weighted least squares image reconstruction for positron emission tomography. IEEE Trans. Med. Imag. 13(2), 290–300 (1994)

    Article  Google Scholar 

  9. Fessler, J., Hero, A.O.: Penalized maximum-likelihood image reconstruction using space alternation generalized em algorithms. IEEE Trans. Image Process. 4(10), 1417–29 (1995)

    Article  Google Scholar 

  10. Fessler, J.A., Hero, A.O.: Space-alternating generalized EM algorithms. IEEE Trans. Signal Process. 42(10), 2664–2677 (1994)

    Article  Google Scholar 

  11. Green, P.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imag. 9(1), 84–93 (1990)

    Article  Google Scholar 

  12. Guoa, H., Renauta, R.A., Chenb, K., Reimanb, E.: FDGPET parametric imaging by total variation minimization. Comput. Med. Imaging Graph. 33, 295–303 (2009)

    Article  Google Scholar 

  13. Herbert, T., Leahy, R.: A generalized EM algorithm for 3-D Bayesian reconstruction from poisson data using Gibbs priors. IEEE Trans. Med. Imag. 8(2), 194–202 (1989)

    Article  Google Scholar 

  14. Hsiao, T., Rangarajan, A., Gindi, G.: Bayesian image reconstruction for transmission tomography using deterministic annealing. J. Electron. Imaging 12, 7 (2003). doi:10.1117/1.1526103

    Article  Google Scholar 

  15. Jonsson, E., Huang, S.-c., Chan, T.: Total-variation regularization in positron emission tomography. Tech. Rep. 98-48, UCLA Group in Computational and Applied Mathematics (1998)

  16. Kaipio, J., Somersalo, E.: Satistical and Computational Inverse Problems. Springer (2005)

  17. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  18. Lange, K., Carson, R.: EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 8, 306–316 (1984)

    Google Scholar 

  19. Lee, S.-J., Rangarajan, A., Gindi, G.: Bayesian image reconstruction in SPECT using higher order mechanical models as priors. IEEE Trans. Med. Imag. 14(4), 669–680 (1995)

    Article  Google Scholar 

  20. Mumcuoglu, E.U., Leahy, R., Cherry, S.R., Zhou, Z.: Fast Gradient-based methods for Bayesian reconstruction of transmission and Emission PET images. IEEE Trans. Med. Imag. 13, 687–701 (1994)

    Article  Google Scholar 

  21. Ollinger, J.M., Fessler, J.A.: Positron-emission tomography. IEEE Signal Process. Mag. 14(1), 43–55 (1997)

    Article  Google Scholar 

  22. Sawatzky, A., Brune, C., Müller, J., Burger, M.: Total variation processing of images with poisson statistics. In: Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 5702, pp. 235–246. Springer (2009)

  23. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction in positron emission tomography. IEEE Trans. Med. Imag. MI-1, 113–122 (1982)

    Article  Google Scholar 

  24. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philidelphia (2002)

    Book  MATH  Google Scholar 

  25. Vogel, C.R., Oman, M.E.: A fast, robust algorithm for total variation based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 7, 813–824 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yu, D.F., Fessler, J.A.: Edge-preserving tomographic reconstruction with nonlocal regularization. IEEE Trans. Med. Imag. 21(2), 159–173 (2002)

    Article  Google Scholar 

  27. Brune, C., Burger, M., Müller, J., Sawatzky, A.: Total variation processing of images with Poisson statistics. In: Jiang, X., Petkov, N. (eds.) Proceedings of the 13th International Conference on Computer Analysis of Images and Petterns. Lecture Notes in Computer Science, vol. 5702, pp. 533–540. Springer (2009). doi:10.1007/978-3-642-03767-2_65

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan M. Bardsley.

Additional information

Supported by the NSF under grant DMS-0915107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardsley, J.M., Goldes, J. Regularization parameter selection and an efficient algorithm for total variation-regularized positron emission tomography. Numer Algor 57, 255–271 (2011). https://doi.org/10.1007/s11075-010-9427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9427-4

Keywords

Mathematics Subject Classifications (2010)

Navigation