Skip to main content
Log in

A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic SDO

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Kernel functions play an important role in the design and analysis of primal-dual interior-point algorithms. They are not only used for determining the search directions but also for measuring the distance between the given iterate and the μ-center for the algorithms. In this paper we present a unified kernel function approach to primal-dual interior-point algorithms for convex quadratic semidefinite optimization based on the Nesterov and Todd symmetrization scheme. The iteration bounds for large- and small-update methods obtained are analogous to the linear optimization case. Moreover, this unifies the analysis for linear, convex quadratic and semidefinite optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amini, K., Haseli, A.: A new proximity function generating the best known iteration bounds for both large-update and small-update interior-point methods. ANZIAM J. 49(2), 259–270 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alfakih, A.Y., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12(1–3), 13–30 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bai, Y.Q., Guo, J., Roos, C.: A new kernel function yielding the best known iteration bounds for primal-dual interior-point algorithms. Acta Math. Sin., Engl. Ser. 25(12), 2169–2178 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bai, Y.Q., Lesaja, G., Roos, C., Wang, G.Q., El Ghami, M.: A class of large-update and small-update primal-dual interior-point algorithms for linear optimization. J. Optim. Theory Appl. 138(3), 341–359 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bai, Y.Q., Roos, C.: A primal-dual interior-point method based on a new kernel function with linear growth rate. In: Proceedings of Industrial Optimization Symposium and Optimization Day. Australia (2002)

  6. Bai, Y.Q., Roos, C.: A polynomial-time algorithm for linear optimization based a new simple kernel function. Optim. Methods Softw. 18(6), 631–646 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bai, Y.Q., Roos, C., El Ghami, M.: A primal-dual interior-point method for linear optimization based a new proximity function. Optim. Methods Softw. 17(6), 985–1008 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bai, Y.Q., Roos, C., El Ghami, M.: A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization. SIAM J. Optim. 15(1), 101–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bai, Y.Q., Wang, G.Q., Roos, C.: Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions. Nonlinear Anal. 70(10), 3584–3602 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. El Ghami, M., Bai, Y.Q., Roos, C.: Kernel-function based algorithms for semidefinite optimization. RAIRO Oper. Res. 43, 189–199 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. EL Ghami, M., Ivanov, I.D., Roos, C., Steihag, T.: A polynomial-time algorithm for LO based on generalized logarithmic barrier functions. Int. J. Appl. Math. 21(1), 99–115 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Horn, R.A., Charles, R.J.: Matrix Analysis. Cambridge University Press, UK (1986)

    Google Scholar 

  13. de Klerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  14. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7(1), 86–125 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Liu, Z.Y., Sun, W.Y.: An infeasible interior-point algorithm with full-Newton step for linear optimization. Numer. Algorithms 46(2), 173–188 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nie, J.W., Yuan, Y.X.: A potential reduction algorithm for an extended SDP problem. Sci. China, Ser. A 43(1), 35–46 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nie, J.W., Yuan, Y.X.: A predictor-corrector algorithm for QSDP combining Dikin-type and Newton centering steps. Ann. Oper. Res. 103, 115–133 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nesterov, Y.E., Todd, M.J.: Self-scaled barries and interior-point methods for convex programming. Math. Oper. Res. 22(1), 1–42 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8(2), 324–364 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Peng, J., Roos, C., Terlaky, T.: New complexity analysis of the primal-dual Newton method for linear optimization. Ann. Oper. Res. 99, 23–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peng, J., Roos, C., Terlaky, T.: Self-regular functions and new search directions for linear and semidefinite optimization. Math. Program. 93(1), 129–171 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Qi, H., Sun, D.: A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl. 28(2), 360–385 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Roos, C., Terlaky, T., Vial, J.Ph.: Theory and Algorithms for Linear Optimization. An Interior-Point Approach. Wiley, Chichester (1997)

    MATH  Google Scholar 

  24. Toh, K.C.: An inexact primal-dual path following algorithm for convex quadratic SDP. Math. Program. 112(1), 221–254 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Toh, K.C., Tütüncü, R.H., Todd, M.J.: Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems. Pac. J. Optim. 3(1), 135–164 (2007)

    MATH  MathSciNet  Google Scholar 

  26. Wang, G.Q., Bai, Y.Q., Roos, C.: Primal-dual interior-point algorithms for semidefinite optimization based on a simple kernel function. J. Math. Model. Algorithms 4(4), 409-433 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, G.Q., Bai, Y.Q.: Primal-dual interior-point algorithms for convex quadratic semidefinite optimization. Nonlinear Anal. 71(7–8), 3389–3402 (2009)

    MATH  MathSciNet  Google Scholar 

  28. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming, Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Zhu, D. A unified kernel function approach to primal-dual interior-point algorithms for convex quadratic SDO. Numer Algor 57, 537–558 (2011). https://doi.org/10.1007/s11075-010-9444-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9444-3

Keywords

Mathematics Subject Classifications (2010)

Navigation