Skip to main content
Log in

Extending the applicability of the Gauss–Newton method under average Lipschitz–type conditions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We extend the applicability of the Gauss–Newton method for solving singular systems of equations under the notions of average Lipschitz–type conditions introduced recently in Li et al. (J Complex 26(3):268–295, 2010). Using our idea of recurrent functions, we provide a tighter local as well as semilocal convergence analysis for the Gauss–Newton method than in Li et al. (J Complex 26(3):268–295, 2010) who recently extended and improved earlier results (Hu et al. J Comput Appl Math 219:110–122, 2008; Li et al. Comput Math Appl 47:1057–1067, 2004; Wang Math Comput 68(255):169–186, 1999). We also note that our results are obtained under weaker or the same hypotheses as in Li et al. (J Complex 26(3):268–295, 2010). Applications to some special cases of Kantorovich–type conditions are also provided in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyros, I.K.: On the Newton–Kantorovich hypothesis for solving equations. J. Comput. Appl. Math. 169, 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two–point Newton–like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyros, I.K.: On the semilocal convergence of the Gauss–Newton method. Adv. Nonlinear Var. Inequal. 8, 93–99 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007)

    Google Scholar 

  5. Argyros, I.K.: On a class of Newton–like methods for solving nonlinear equations. J. Comput. Appl. Math. 228, 115–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Argyros, I.K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica Publisher, Milano (2009)

    Google Scholar 

  7. Argyros, I.K., Hilout, S.: Enclosing roots of polynomial equations and their applications to iterative processes. Surv. Math. Appl. 4, 119–132 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Argyros, I.K., Hilout, S.: On the solution of systems of equations with constant rank derivatives. Numer. Algor. (to appear) doi:10.1007/s11075-010-9426-5

  9. Argyros, I.K., Hilout, S.: Improved generalized differentiability conditions for Newton–like methods. J. Complex. 26(3), 316–333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. With a Foreword by Richard M. Karp. Springer–Verlag, New York (1998)

    Google Scholar 

  11. Ben–Israel, A.: A Newton–Raphson method for the solution of systems of equations. J. Math. Anal. Appl. 15, 243–252 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ben–Israel, A., Greville, T.N.E.: Generalized inverses. Theory and Applications, 2nd edn. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15. Springer–Verlag, New York (2003)

    Google Scholar 

  13. Chen, P.Y.: Approximate zeros of quadratically convergent algorithms. Math. Comput. 63, 247–270 (1994)

    Article  MATH  Google Scholar 

  14. Dedieu, J.P., Kim, M–H.: Newton’s method for analytic systems of equations with constant rank derivatives. J. Complex. 18, 187–209 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dedieu, J.P., Shub, M.: Newton’s method for overdetermined systems of equations. Math. Comput. 69, 1099–1115 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Deuflhard, P.: A study of the Gauss–Newton algorithm for the solution of nonlinear least squares problems. Special topics of applied mathematics (Proc. Sem., Ges. Math. Datenverarb., Bonn, 1979), pp. 129–150. North–Holland, Amsterdam–New York (1980)

  17. Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newton’s method and extensions to related methods. SIAM J. Numer. Anal. 16, 1–10 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ezquerro, J.A., Hernández, M.A.: Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 22, 187–205 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ezquerro, J.A., Hernández, M.A.: On an application of Newton’s method to nonlinear operators with w–conditioned second derivative. BIT 42, 519–530 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Gragg, W.B., Tapia, R.A.: Optimal error bounds for the Newton–Kantorovich theorem. SIAM J. Numer. Anal. 11, 10–13 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gutiérrez, J.M.: A new semilocal convergence theorem for Newton’s method. J. Comput. Appl. Math. 79, 131–145 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gutiérrez, J.M., Hernández, M.A.: Newton’s method under weak Kantorovich conditions. IMA J. Numer. Anal. 20, 521–532 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Häubler, W.M.: A Kantorovich–type convergence analysis for the Gauss–Newton–method. Numer. Math. 48, 119–125 (1986)

    Article  MathSciNet  Google Scholar 

  24. He, J.S., Wang, J.H., Li, C.: Newton’s method for underdetermined systems of equations under the γ–condition. Numer. Funct. Anal. Optim. 28, 663–679 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hernández, M.A.: The Newton method for operators with Hölder continuous first derivative. J. Optim. Theory Appl. 109, 631–648 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hu, N., Shen, W., Li, C.: Kantorovich’s type theorems for systems of equations with constant rank derivatives. J. Comput. Appl. Math. 219, 110–122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  28. Li, C., Ng, K.F.: Majorizing functions and convergence of the Gauss-Newton method for convex composite optimization. SIAM J. Optim. 18(2), 613–642 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, C., Wang, J.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ–condition. IMA J. Numer. Anal. 26(2), 228–251 (2006)

    Article  MathSciNet  Google Scholar 

  30. Li, C., Zhang, W–H., Jin, X–Q.: Convergence and uniqueness properties of Gauss–Newton’s method. Comput. Math. Appl. 47, 1057–1067 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, C., Hu, N., Wang, J.: Convergence bahavior of Gauss–Newton’s method and extensions to the Smale point estimate theory. J. Complex. 26(3), 268–295 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Potra, F.A.: On the convergence of a class of Newton–like methods. In: Iterative Solution of Nonlinear Systems of Equations (Oberwolfach, 1982). Lecture Notes in Math., vol. 953, pp. 125–137. Springer, Berlin–New York (1982)

    Google Scholar 

  33. Potra, F.A.: On an iterative algorithm of order 1.839 ⋯ for solving nonlinear operator equations. Numer. Funct. Anal. Optim. 7(1), 75–106 (1984/85)

    Google Scholar 

  34. Potra, F.A.: Sharp error bounds for a class of Newton–like methods. Libertas Mathematica 5, 71–84 (1985)

    MathSciNet  MATH  Google Scholar 

  35. Shub, M., Smale, S.: Complexity of Bezout’s theorem. IV. Probability of success, extensions. SIAM J. Numer. Anal. 33, 128–148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Smale, S.: The fundamental theorem of algebra and complexity theory. Bull. Am. Math. Soc. 4, 1–36 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. Smale, S.: Newton’s method estimates from data at one point. In: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics (Laramie, Wyo., 1985), pp. 185–196. Springer, New York (1986)

    Google Scholar 

  38. Smale, S.: Complexity theory and numerical analysis. In: Acta Numerica, pp. 523–551. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  39. Stewart, G.W., Sun, J.G.: Matrix perturbation theory. Computer Science and Scientific Computing. Academic Press, Inc., Boston, MA (1990)

    Google Scholar 

  40. Traub, J.F., Woźniakowski, H.: Convergence and complexity of Newton iteration for operator equations. J. Assoc. Comput. Mach. 26, 250–258 (1979)

    MathSciNet  MATH  Google Scholar 

  41. Wang, X.H.: Convergence of Newton’s method and inverse function theorem in Banach space. Math. Comput. 68(255), 169–186 (1999)

    MATH  Google Scholar 

  42. Wang, X.H.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach space. IMA J. Numer. Anal. 20(1), 123–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, X.H., Han, D.F.: On dominating sequence method in the point estimate and Smale theorem. Sci. China, Ser. A 33(2), 135–144 (1990)

    MathSciNet  MATH  Google Scholar 

  44. Wang, X.H., Han, D.F.: Criterion α and Newton’s method under weak conditions. (Chinese) Math. Numer. Sin. 19(1), 103–112 (1997); translation in Chinese J. Numer. Math. Appl. 19(2), 96–105 (1997)

  45. Wang, X.H., Li, C.: The local and global behaviors of methods for solving equations. (Chinese) Kexue Tongbao 46(6), 444–451 (2001)

    Google Scholar 

  46. Wang, X.H., Li, C.: Local and global behavior for algorithms of solving equations. Chin. Sci. Bull. 46(6), 441–448 (2001)

    Article  MATH  Google Scholar 

  47. Wang, G.R., Wei, Y.M., Qiao, S.Z.: Generalized inverse: Theory and Computations. Science Press, Beijing, New York (2004)

    Google Scholar 

  48. Wang, X.H., Xuan, X.H.: Random polynomial space and computational complexity theory. Sci. Sin. Ser. A 30(7), 673–684 (1987)

    MathSciNet  MATH  Google Scholar 

  49. Wang, D.R., Zhao, F.G.: The theory of Smale’s point estimation and its applications, Linear/nonlinear iterative methods and verification of solution (Matsuyama, 1993). J. Comput. Appl. Math. 60(1–2), 253–269 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Wedin, P.A.: Perturbation theory for pseudo–inverse. BIT 13, 217–232 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  51. Xu, X.B., Li, C.: Convergence of Newton’s method for systems of equations with constant rank derivatives. J. Comput. Math. 25, 705–718 (2007)

    MathSciNet  MATH  Google Scholar 

  52. Xu, X.B., Li, C.: Convergence criterion of Newton’s method for singular systems with constant rank derivatives. J. Math. Anal. Appl. 345, 689–701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Hilout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyros, I.K., Hilout, S. Extending the applicability of the Gauss–Newton method under average Lipschitz–type conditions. Numer Algor 58, 23–52 (2011). https://doi.org/10.1007/s11075-011-9446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9446-9

Keywords

Mathematics Subject Classifications (2010)

Navigation