Skip to main content
Log in

Study on asymptotic analytical solutions using HAM for strongly nonlinear vibrations of a restrained cantilever beam with an intermediate lumped mass

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Presented herein is to establish the asymptotic analytical solutions for the fifth-order Duffing type temporal problem having strongly inertial and static nonlinearities. Such a problem corresponds to the strongly nonlinear vibrations of an elastically restrained beam with a lumped mass. Taking into consideration of the inextensibility condition and using an assumed single mode Lagrangian method, the single-degree-of-freedom ordinary differential equation can be derived from the governing equations of the beam model. Various parameters of the nonlinear unimodal temporal equation stand for different vibration modes of inextensible cantilever beam. By imposing the homotopy analysis method (HAM), we establish the asymptotic analytical approximations for solving the fifth-order nonlinear unimodal temporal problem. Within this research framework, both the frequencies and periodic solutions of the nonlinear unimodal temporal equation can be explicitly and analytically formulated. For verification, numerical comparisons are conducted between the results obtained by the homotopy analysis and numerical integration methods. Illustrative examples are selected to demonstrate the accuracy and correctness of this approach. Besides, the optimal HAM approach is introduced to accelerate the convergence of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulaziz, O., Noor, N.F.M., Hashim, I.: Homotopy analysis method for fully developed MHD micropolar fluid flow between vertical porous plates. Int. J. Numer. Methods Eng. 78, 817–827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amore, P., Aranda, A.: Improved Lindstedt–Poincaré method for the solution of nonlinear problems. J. Sound Vib. 283, 1115–1136 (2005)

    Article  MathSciNet  Google Scholar 

  3. Chen, S.S., Chen, C.K.: Application of the differential transformation method to the free vibrations of strongly non-linear oscillators. Nonlinear Anal.: Real World Appl. 10, 881–888 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y.M., Liu, J.K.: Homotopy analysis method for limit cycle flutter of airfoils. Appl. Math. Comput. 203, 854–863 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheung, Y.K., Chen, S.H., Lau, S.L.: A modified Lindstedt–Poincaré method for certain non-linear oscillators. Int. J. Non-Linear Mech. 26, 367–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ganji, S.S., Ganji, D.D., Sfahani, M.G., Karimpour, S.: Application of AFF and HPM to the systems of strongly nonlinear oscillation. Current Applied Physics 10, 1317–1325 (2010)

    Article  Google Scholar 

  7. Hamdan, M.N., Dado, M.H.F.: Large amplitude free vibrations of a uniform cantilever beam carrying an intermediate lumped mass and rotary inertia. J. Sound Vib. 206, 151–168 (1997)

    Article  Google Scholar 

  8. Hamdan, M.N., Shabaneh, N.H.: On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass. J. Sound Vib. 199, 711–736 (1997)

    Article  Google Scholar 

  9. Hilton, P.J.: An Introduction to Homotopy Theory. Cambridge University Press, Cambridge (1953)

    MATH  Google Scholar 

  10. Hu, Q.Q., Lim, C.W., Chen, L.Q.: Nonlinear vibration of a cantilever with a Derjaguin–Müller–Toporov contact end. Int. J. Struct. Stab. Dyn. 8, 25–40 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huseyin, K., Lin, R.: An intrinsic multiple-scale harmonic balance method for non-linear vibration and bifurcation problems. Int. J. Non-Linear Mech. 26, 727–740 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jafari-Talookolaei, R.A., Salarieh, H., Kargarnovin, M.H.: Analysis of large amplitude free vibrations of unsymmetrically laminated composite beams on a nonlinear elastic foundation. Acta Mech. doi:10.1007/s00707-010-0439-x (to appear)

  13. Ke, L.L., Yang, J., Kitipornchai, S., Xiang, Y.: Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mech. Adv. Mater. Struct. 16, 488–502 (2009)

    Article  Google Scholar 

  14. Lai, S.K., Lim, C.W., Wu, B.S., Wang, C., Zeng, Q.C., He, X.F.: Newton-harmonic balancing approach for accurate solutions to nonlinear cubic–quintic Duffing oscillators. Appl. Math. Model. 33, 852–866 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liao, S.J.: The proposed homotopy analysis techniques for the solution of nonlinear problems. Ph.D. dissertation, Shanghai Jiao Tong University, China (1992)

  16. Liao, S.J.: An approximate solution technique not depending on small parameters: a special example. Int. J. Non-Linear Mech. 30, 371–380 (1995)

    Article  MATH  Google Scholar 

  17. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall, Boca Raton (2003)

    Book  Google Scholar 

  18. Liao, S.J.: Comparison between the homotopy analysis method and homotopy perturbation method. Appl. Math. Comput. 169, 1186–1194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, S.J.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2003–2016 (2010)

    Article  MathSciNet  Google Scholar 

  20. Lim, C.W., Xu, R., Lai, S.K., Yu, Y.M., Yang, Q.: Nonlinear free vibration of an elastically-restrained beam with a point via the Newton-harmonic balancing approach. Int. J. Nonlinear Sci. Numer. Simul. 10, 661–674 (2009)

    Article  Google Scholar 

  21. Mehdipour, I., Ganji, D.D., Mozaffari, M.: Application of the energy balance method to nonlinear vibrating equations. Curr. Appl. Phys. 10, 104–112 (2010)

    Article  Google Scholar 

  22. Mickens, R.E.: Mathematical Methods for the Natural and Engineering Sciences. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  23. Nash, C., Sen, S.: Topology and Geometry for Physicists. Academic, London (1983)

    MATH  Google Scholar 

  24. Pirbodaghi, T., Hoseini, S.H., Ahmadian, M.T., Farrahi, G.H.: Duffing equations with cubic and quintic nonlinearities. Comput. Math. Appl. 57, 500–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pušenjak, R.R.: Extended Lindstedt–Poincare method for non-stationary resonances of dynamical systems with cubic nonlinearities. J. Sound Vib. 314, 194–216 (2008)

    Article  Google Scholar 

  26. Seelig, F.F.: Unrestricted harmonic balance II. Application to stiff ordinary differential equations in enzyme catalysis. J. Math. Biol. 12, 187–198 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Senator, M., Bapat, C.N.: A perturbation technique that works even when the non-linearity is not small. J. Sound Vib. 164, 1–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Summers, J.L., Savage, M.D.: Two timescale harmonic-balance. I. Application to autonomous one-dimensional nonlinear oscillators. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 340, 473–501 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach. Commun. Nonlinear Sci. Numer. Simul. 14, 4078–4089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wagner, H.: Large-amplitude free vibrations of a beam. J. Appl. Mech. Trans. ASME 32, 887–892 (1965)

    Google Scholar 

  31. Wang, C., Pop, I.: Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method. J. Non-Newton. Fluid Mech. 138, 161–172 (2006)

    Article  MATH  Google Scholar 

  32. Wu, B.S., Li, P.S.: A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 36, 167–176 (2001)

    Article  MATH  Google Scholar 

  33. Yabushita, K., Yamashita, M., Tsuboi, K.: An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. J. Phys. A: Math. Theory 40, 8403–8416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, W., Qian, Y.H., Yao, M.H., Lai, S.K.: Periodic solutions of multi-degree-of-freedom strongly nonlinear coupled van der Pol oscillators by homotopy analysis method. Acta Mech. 217, 269–285 (2011)

    Article  MATH  Google Scholar 

  35. Zhang, W., Wang, F.X., Yao, M.H.: Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Nonlinear Dyn. 40, 251–279 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, Y.H., Lai, S.K., Zhang, W. et al. Study on asymptotic analytical solutions using HAM for strongly nonlinear vibrations of a restrained cantilever beam with an intermediate lumped mass. Numer Algor 58, 293–314 (2011). https://doi.org/10.1007/s11075-011-9456-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9456-7

Keywords

Mathematics Subject Classifications (2010)

Navigation