Skip to main content
Log in

Convergence of a third order method for fixed points in Banach spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, the semilocal convergence of a third order Stirling-like method used to find fixed points of nonlinear operator equations in Banach spaces is established under the assumption that the first Fréchet derivative of the involved operator satisfies ω-continuity condition. It turns out that this convergence condition is weaker than the Lipschitz and the Hölder continuity conditions on first Fréchet derivative of the involved operator. The importance of our work lies in the fact that numerical examples can be given to show that our approach is successful even in cases where Lipschitz and Hölder continuity conditions on first Fréchet derivative fail. It also avoids the evaluation of second order Fréchet derivative which is difficult to compute at times. A priori error bounds along with the domains of existence and uniqueness of a fixed point are derived. The R-order of the method is shown to be equal to (2p + 1) for p ∈ (0,1]. Finally, two numerical examples involving nonlinear integral equations are worked out to show the efficacy of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartle, R.G.: Newton’s method in Banach spaces. Proc. Am. Math. Soc. 6, 827–831 (1955)

    MathSciNet  MATH  Google Scholar 

  2. Rall, L.B.: Convergence of Stirling’s method in Banach spaces. Aequ. Math. 12, 12–20 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lambert, J.D.: Computational Methods in Ordinary Differential Equations. Wiley, New York (1973)

    MATH  Google Scholar 

  4. Ezquerro, J.A., Hernández, M.A.: On the R-order of the Halley method. J. Math. Anal. Appl. 303, 591–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hernández, M.A., Salanova, M.A.: Indices of convexity and concavity. Application to Halley method. Appl. Math. Comput. 103, 27–49 (1999)

    MATH  Google Scholar 

  6. Hernández, M.A., Salanova, M.A.: Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method. J. Comput. Appl. Math. 126, 131–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hernández, M.A.: Chebyshev’s approximation algorithms and applications. Comput. Math. Appl. 41, 433–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hernández, M.A., Romero, N.: On a characterization of some Newton-like methods of R-order at least three. J. Comput. Appl. Math. 183, 53–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hernández, M.A., Romero, N.: On a new multiparametric family of Newton-like methods, Appl. Numer. Anal. Comput. Math. 2, 78–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wu, Q., Zhao, Y.: Third-order convergence theorem by using majorizing function for a modified Newton method in Banach space. Appl. Math. Comput. 175, 1515–1524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ye, X., Li, C.: Convergence of the family of the deformed Euler–Halley iterations under the Hölder condition of the second derivative. J. Comput. Appl. Math. 194, 294–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gupta, D.K., Parida, P.K.: A Newton-like method in Banach spaces under mild differentiability conditions. Kodai Math. J. 31, 414–430 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ezquerro, J.A., Hernández, M.A., Salanova, M.A.: A discretization scheme for some conservative problems. J. Comput. Appl. Math. 115, 181–192 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ezquerro, J.A., Hernández, M.A.: A modification of the super-Halley method under mild differentiability conditions. J. Comput. Appl. Math. 114, 405–409 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ezquerro, J.A., Hernández, M.A.: On Halley-type iterations with free second derivative. J. Comput. Appl. Math. 170, 455–459 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ye, X., Li, C., Shen, W.: Convergence of the variants of the Chebyshev–Halley iteration family under the Hölder condition of the first derivative. J. Comput. Appl. Math. 203, 279–288 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Parhi, S.K., Gupta, D.K.: A third order method for fixed points in Banach spaces. J. Math. Anal. Appl. 359, 642–652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ganesh, M., Joshi, M.C.: Numerical solvability of Hammerstein integral equation of mixed type. IMA J. Numer. Anal. 11, 21–31 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Argyros, I.K.: Stirling’s method and fixed points of nonlinear operator equations in Banach space. Bull. Inst. Math. Acad. Sin. 23, 13–20 (1995)

    MATH  Google Scholar 

  20. Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations. CRC Press, Boca Ratón, Florida (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K Parhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parhi, S.K., Gupta, D.K. Convergence of a third order method for fixed points in Banach spaces. Numer Algor 60, 419–434 (2012). https://doi.org/10.1007/s11075-011-9521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-011-9521-2

Keywords

Mathematics Subject Classification (2010)

Navigation