Skip to main content
Log in

Numerical computation of connecting orbits on a manifold

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we propose a numerical method for approximating connecting orbits on a manifold and its bifurcation parameters. First we extend the standard nondegeneracy condition to the connecting orbits on a manifold. Then we construct a well-posed system such that the nondegenerate connecting orbit pair on a manifold is its regular solution. We use a difference method to discretize the ODE part in this well-posed system and we find that the numerical solutions still remain on the same manifold. We also set up a modified projection boundary condition to truncate connecting orbits on a manifold onto a finite interval. Then we prove the existence of truncated approximate connecting orbit pairs and derive error estimates. Finally, we carry out some numerical experiments to illustrate the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E., Ratiu, T.: Manifolds, tensor analysis, and applications. In: Applied Mathematical Sciences, vol. 75, 2nd edn. Springer-Verlag, New York (1988)

    Google Scholar 

  2. van den Berg, J.B., Mireles-James, J.D., Lessard, J.P., Mischaikow, K.: Rigorous numerics for symmetric connecting orbits: Even homoclinics of the Gray–Scott equation. SIAM J. Math. Anal. 43, 1557–1594 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beyn, W.J.: The effect of discretization on homoclinic orbits. In: Bifurcation: analysis, algorithms, applications (Dortmund, 1986). Internat. Schriftenreihe Numer. Math. vol. 79, pp. 1–8. Birkhäuser, Basel (1987)

  4. Beyn, W.J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10, 379–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beyn, W.J., Hüls, T.: Error estimates for approximating non-hyperbolic heteroclinic orbits of maps. Numer. Math. 99(2), 289–323 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coomes, B.A., Koçak, H., Palmer, K.J.: Transversal connecting orbits from shadowing. Numer. Math. 106(3), 427–469 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppel, W.A.: Dichotomies in stability theory. Lecture Notes in Mathematics, vol. 629. Springer-Verlag, Berlin (1978)

    MATH  Google Scholar 

  8. Doedel, E.J., Kooi, B.W., van Voorn, G.A.K., Kuznetsov, Y.A.: Continuation of connecting orbits in 3D-ODEs. I. Point-to-cycle connections. Int. J. Bifurc. Chaos Appl. Sci. Eng. 18(7), 1889–1903 (2008)

    Article  MATH  Google Scholar 

  9. Fatokun, J.O., Ajibola, I.K.O.: A collocation multistep method for integrating ordinary differential equations on manifolds. J. Mod. Math. Stat. 2(6), 192–196 (2008)

    MathSciNet  Google Scholar 

  10. Hairer, E.: Symmetric projection methods for differential equations on manifolds. BIT 40(4), 726–734 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Hoog, F.R., Weiss, R.: An approximation theory for boundary value problems on infinite intervals. Computing 24(2–3), 227–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hüls, T., Zou, Y.: Polynomial estimates and discrete saddle-node homoclinic orbits. J. Math. Anal. Appl. 256(1), 115–126 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koçak, H., Palmer, K., Coomes, B.: Shadowing in ordinary differential equations. Rend. Semin. Mat. Univ. Politec. Torino 65(1), 89–113 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Lentini, M., Keller, H.B.: Boundary value problems on semi-infinite intervals and their numerical solution. SIAM J. Numer. Anal. 17(4), 577–604 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. März, R.: On initial value problems in differential-algebraic equations and their numerical treatment. Computing 35(1), 13–37 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. In: Proceedings of the NSF/CBMS Regional Conference on Numerical Analysis of Hamiltonian Differential Equations (Golden, CO, 1997), vol. 29, pp. 115–127 (1999)

  17. Palmer, K.J.: Exponential dichotomies and transversal homoclinic points. J. Differ. Equ. 55(2), 225–256 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rheinboldt, W.C.: Differential-algebraic systems as differential equations on manifolds. Math. Comp. 43(168), 473–482 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  20. Wiggins, S.: Global dynamics, phase space transport, orbits homoclinic to resonances, and applications. In: Fields Institute Monographs, vol. 1. American Mathematical Society, Providence, RI (1993)

  21. Wilczak, D.: Symmetric heteroclinic connections in the Michelson system: A computer assisted proof. SIAM J. Appl. Dyn. Syst. 4(3), 489–514 (2005, electronic)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zou, Y., Beyn, W.J.: On the Existence of Transversal Heteroclinic Orbits in Discretized Dynamical Systems. Institute of Mathmatics, University of Bielefeld (2003)

  23. Zou, Y.K., Beyn, W.J.: On manifolds of connecting orbits in discretizations of dynamical systems. Nonlinear Anal. TMA 52(5), 1499–1520 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongkui Zou.

Additional information

This work is supported by NSFC of No.11071102 and 10801062.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zou, Y. Numerical computation of connecting orbits on a manifold. Numer Algor 61, 429–464 (2012). https://doi.org/10.1007/s11075-012-9542-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9542-5

Keywords

Mathematics Subject Classifications (2010)

Navigation