Skip to main content
Log in

Convergence and stability of a new quadrature rule for evaluating Hilbert transform

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The importance of singular integral transforms, coming from their many applications, justifies some interest in their numerical approximation. Here we propose a stable and convergent algorithm to evaluate such transforms on the real line. Numerical examples confirming the theoretical results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bracewell, R.: The Fourier transform and its applications. Electrical and Electronic Engineering Series. McGraw–Hill, New York (1965)

    Google Scholar 

  2. Capobianco, M.R., Criscuolo, G.: On quadrature for Cauchy principal value integrals of oscillatory functions. J. Comput. Appl. Math. 156, 471–486 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Capobianco, M.R., Criscuolo, G., Giova, R.: Approximation of the Hilbert transform on the real line by an interpolatory process. BIT 41, 666–682 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capobianco, M.R., Criscuolo, G., Giova, R.: A stable and convergent algorithm to evaluate Hilbert transform. Numer. Algor. 28, 11–26 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiodo, C., Criscuolo, G.: On the convergence of a rule by Monegato for the numerical evaluation of Cauchy principal value integrals. Computing 40, 67–74 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Criscuolo, G.: A new algorithm for Cauchy principal value and Hadamard finite–part integrals. J. Comput. Appl. Math. 78, 255–275 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Criscuolo, G.: A note on a paper: “error estimates in the numerical evaluation of some BEM singular integrals” [Math. Comput. 70(233), 251–267 (2001)] by Mastroiani, G., Monegato, G. Math. Comput. 73, 243–250 (2004)

  8. Criscuolo, G., Giova, R.: On the evaluation of the finite Hilbert transform by a procedure of interpolatory type. B. N. Prasad birth centenary commemoration volume. Bull. Allahabad Math. Soc. 14, 21–33 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Criscuolo, G., Mastroianni, G.: Convergence of Gauss–Christoffel formula with preassigned node for Cauchy principal-value integrals. J. Approx. Theory 50, 326–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Criscuolo, G., Mastroianni, G.: On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals. Math. Comput. 48, 725–735 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Criscuolo, G., Mastroianni, G.: Convergence of Gauss type product formulas for the evaluation of two-dimensional Cauchy principal value. BIT 27, 72–84 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Criscuolo, G., Mastroianni, G.: On the convergence of product formulas for the numerical evaluation of derivatives of Cauchy principal value integrals. SIAM J. Numer. Anal. 25, 713–727 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  13. Criscuolo, G., Mastroianni, G.: On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals. Numer. Math. 54, 445–461 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Criscuolo, G., Mastroianni, G.: Mean and uniform convergence of quadrature rules for evaluating the finite Hilbert transform. Progress in Approximation Theory, pp. 141–175. Academic Press, Boston (1991)

    Google Scholar 

  15. Criscuolo, G., Scuderi, L.: The numerical evaluation of Cauchy principal value integrals with non–standard weight functions. BIT 38, 256–274 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Criscuolo, G., Della Vecchia, B., Lubinsky, D.S., Mastroianni, G.: Functions of the second kind for Freud weights and series expansions of Hilbert transforms. J. Math. Anal. Appl. 189, 256–296 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Damelin, S.B., Diethelm, K.: Interpolatory product quadrature for Cauchy principal value integrals with Freud weights. Numer. Math. 83, 87–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Damelin, S.B., Diethelm, K.: Boundedness and uniform numerical approximation of the weighted Hilbert transform on the real line. J. Funct. Anal. Optim. 22(1–2), 13–54 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Damelin, S.B., Diethlem, K.: Weighted polynomial approximation and Hilbert transforms: their connections to the numerical solution of singular integral equations. In: Proceedings of Dynamic Systems and Applications, vol. 4, pp. 20–26. Dynamic, Atlanta (2004)

  20. Damelin, S.B., Diethelm, K.: Approximation methods and stability of singular integral equations for Freud exponential weights on the line. J. Integral Equ. Appl. 16, 273–292 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Diethelm, K.: A method for the practical evaluation of the Hilbert transform on the real line. J. Comutp. Appl. Math. 112, 45–53 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ditzian, Z., Lubinsky, D.S.: Jackson and smoothness theorems for Freud weights in L p (0 < p ≤ ∞ ). Constr. Approx. 13, 99–152 (1997)

    MathSciNet  MATH  Google Scholar 

  23. Levin, A.L., Lubinsky, D.S.: Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights. Constr. Approx. 8, 463–535 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mikhlin, S.G., Prössdorf, S.: Singular integral operators. Springer–Verlag, Berlin (1986)

    Book  Google Scholar 

  25. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff (1977)

  26. Szabados, J.: Weighted Lagrange and Hermite–Fejér interpolation on the real line. J. Inequal. Appl. 1, 99–123 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Wolfram, S.: Mathematica—A System for Doing Mathematics by Computer. Addison Wesley, Redwood City (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Capobianco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capobianco, M.R., Criscuolo, G. Convergence and stability of a new quadrature rule for evaluating Hilbert transform. Numer Algor 60, 579–592 (2012). https://doi.org/10.1007/s11075-012-9584-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9584-8

Keywords

Mathematics Subject Classifications (2010)

Navigation