Skip to main content
Log in

Dispersion analysis of triangle-based spectral element methods for elastic wave propagation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the numerical dispersion/dissipation of Triangle-based Spectral Element Methods (TSEM) of order N ≥ 1 when coupled with the Leap-Frog (LF) finite difference scheme to simulate the elastic wave propagation over a structured triangulation of the 2D physical domain. The analysis relies on the discrete eigenvalue problem resulting from the approximation of the dispersion relation. First, we present semi-discrete dispersion graphs by varying the approximation polynomial degree and the number of discrete points per wavelength. The fully-discrete ones are then obtained by varying also the time step. Numerical results for the TSEM, resp. TSEM-LF, are compared with those of the classical Quadrangle-based Spectral Element Method (QSEM), resp. QSEM-LF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briani, M., Sommariva, A., Vianello, M.: Computing Fekete and Lebesgue points: simplex, square, disk. J. Comput. Appl. Math. 236, 2477–2486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Some spectral approximations of monodimensional fourth order problems. In: Nevai, P., Pinkus, A. (eds.) Progress in Approximation Theory (1991)

  3. Capdeville, Y., Chaljub, E., Vilotte, J.P., Montagner, J.P.: Coupling the spectral element method with a modal solution for elastic wave propagation in realistic 3D global earth models. Geophys. J. Int. 152(1), 34–68 (2003)

    Article  Google Scholar 

  4. Carcione, J.M., Kosloff, D., Behle, A., Seriani, G.: A spectral scheme for wave propagation simulation in 3-D elasticanisotropic media. Geophysics 57, 1593 (1992)

    Google Scholar 

  5. Chaljub, E., Capdeville, Y., Vilotte, J.P.: Solving elastodynamics in a fluidsolid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids. J. Comput. Phys. 187(2), 457–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Basabe, J.D., Sen, M.K.: Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72/6, 81–95 (2007)

    Google Scholar 

  7. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6, 345–390 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faccioli, E., Maggio, F., Quarteroni, A., Tagliani, A.: Spectral-domain decomposition methods for the solution of acoustic and elastic wave equation. Geophysics 61, 1160–1174 (1996)

    Google Scholar 

  9. Faccioli, E., Maggio, F., Paolucci, R., Quarteroni, A.: 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method. J. Seismol. 1, 237–251 (1997)

    Article  Google Scholar 

  10. Hughes, T.J.R.: The Finite Element Method, 2nd edn. Dover Publications, Mineola, NY (2000)

    MATH  Google Scholar 

  11. Giraldo, F.X., Warburton, T.: A nodal triangle-based spectral element method for the shallow water equations on the sphere. J. Comput. Phys. 207(1), 129–150 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, London (2005)

    Book  Google Scholar 

  13. Komatitsch, D., Martin, R., Tromp, J., Taylor, M.A., Wingate, B.A.: Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles. J. Comput. Acoust. 9, 703–718 (2001)

    Article  Google Scholar 

  14. Komatitsch, D., Tromp, J.: Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)

    Article  Google Scholar 

  15. Komatitsch, D., Liu, Q., Tromp, J., Sussa, P., Stidham, C., Shaw, J.H.: Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull. Seismol. Soc. Am. 94(1), 187–206 (2004)

    Article  Google Scholar 

  16. Komatitsch, D., Barnes, C., Tromp, J.: Wave propagation near a fluid-solid interface: a spectral element approach. Geophysics 65, 623–631 (2000)

    Google Scholar 

  17. Komatitsch, D., Vilotte, J.P., Vai, R., Castillo-Covarrubias, J.M., Sanchez-Sesma, F.J.: Spectral element approximation of elastic waves equations: application to 2-D and 3-D seismic problems. Int. J. Numer. Methods Eng. 45, 1139–1164 (1999)

    Article  MATH  Google Scholar 

  18. Komatitsch, D., Vilotte, J.P.: The spectral element method: an efficient tool to simulate the seismic response of 2-D and 3-D geological structures. Bull. Seismol. Soc. Am. 88, 368–392 (1998)

    Google Scholar 

  19. Koorwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R.A. (ed.) Theory and Applications of Special Functions, pp. 435–495. Academic Press (1975)

  20. Maday, Y., Patera, A.T.: Spectral element methods for the incompressible Navier–Stokes equations. In: State of the Art Surveys in Computational Mechanics, pp. 71–143. ASME (1989)

  21. Mercerat, E.D., Vilotte, J.P., Sánchez-Sesma, F.J.: Triangular spectral element simulation of two-dimensional elastic wave propagation using unstructured triangular grids. Geophys. J. Int. 166/2, 679–698 (2006)

    Article  Google Scholar 

  22. Mitchell, A., Griffiths, D.: The Finite Difference Method in Partial Differential Equations. John Wiley and Sons (1980)

  23. Pasquetti, R., Rapetti, F.: Spectral element methods on unstructured meshes: comparisons and recent advances. J. Sci. Comput. 27, 377–387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pasquetti, R., Rapetti, F.: Spectral element methods on unstructured meshes: which interpolation points? Numer. Algorithms 55/2–3, 349–366 (2010)

    Article  MathSciNet  Google Scholar 

  25. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488 (1984)

    Article  MATH  Google Scholar 

  26. Raviart, P.-A., Thomas, J.-M.: Introduction à l’analyse Numérique des Équations aux Dérivées Partielles. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983)

  27. Seriani, G., Oliveira, S.P.: Dispersion analysis of spectral element methods for elastic wave propagation. Wave Motion 45, 729–744 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor, M.A., Wingate, B.A., Vincent, R.E.: An algorithm for computing Fekete points in the triangle. SIAM J. Numer. Anal. 38(5), 1707–1720 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Warburton, T., Pavarino, L., Hesthaven, J.S.: A pseudo-spectral scheme for the incompressible Navier–Stokes equations using unstructured nodal elements. J. Comput. Phys. 164, 1–21 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Rapetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzieri, I., Rapetti, F. Dispersion analysis of triangle-based spectral element methods for elastic wave propagation. Numer Algor 60, 631–650 (2012). https://doi.org/10.1007/s11075-012-9592-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9592-8

Keywords

Navigation