Abstract
In this paper, we consider a Sturm–Liouville problem which contains an eigenparameter appearing linearly in two boundary conditions, in addition to an internal point of discontinuity. Eigenvalue problems with eigenparameter appearing in the boundary conditions usually have complicated characteristic determinant where zeros cannot be explicitly computed. We apply the sinc method, which is based on the sampling theory to compute approximations of the eigenvalues. An error analysis is exhibited involving rigorous error bounds. Using computable error bounds we obtain eigenvalue enclosures in a simple way. Illustrative examples are included to demonstrate the validity and applicability of the presented technique.
Similar content being viewed by others
References
Annaby, M.H., Asharabi, R.M.: Approximating eigenvalues of discontinuous problems by sampling theorems. J. Numer. Math. 16, 163–183 (2008)
Annaby, M.H., Asharabi, R.M.: On sinc-based method in computing eigenvalues of boundary-value problems. SIAM J. Numer. Anal. 46, 671–690 (2008)
Annaby, M.H., Tharwat, M.M.: On sampling theory and eigenvalue problems with an eigenparameter in the boundary conditions. SUT J. Math. 42, 157–176 (2006)
Annaby, M.H., Tharwat, M.M.: On sampling and Dirac systems with eigenparameter in the boundary conditions. J. Appl. Math. Comput. 36(1–2), 291–317 (2011)
Annaby, M.H., Tharwat, M.M.: On computing eigenvalues of second-order linear pencils. IMA J. Numer. Anal. 27, 366–380 (2007)
Annaby, M.H., Tharwat, M.M.: Sinc-based computations of eigenvalues of Dirac systems. BIT 47, 699–713 (2007)
Annaby, M.H., Tharwat, M.M.: On the computation of the eigenvalues of Dirac systems. Calcolo (2011). doi:10.1007/s10092-011-0052-y
Binding, P.A., Browne, P.J., Watson, B.A.: Strum-Liouville problems with boundary conditions rationally dependent on the eigenparameter II. J. Comput. Appl. Math. 148, 147–169 (2002)
Boumenir, A.: The sampling method for Sturm–Liouville problems with the eigenvalue parameter in the boundary condition. Numer. Funct. Anal. Optim. 21 67–75 (2000)
Boumenir, A.: Higher approximation of eigenvalues by the sampling method. BIT 40, 215–225 (2000)
Butzer, P.L., Schmeisser, G., Stens, R.L.: An introduction to sampling analysis. In: Marvasti, F. (ed.) Non Uniform Sampling: Theory and Practice, pp. 17–121. Kluwer, New York (2001)
Butzer, P.L., Splettstösser, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Dtsch. Math.-Ver. 90, 1–70 (1988)
Chadan, K., Sabatier, P.C.: Inverse Problems in Quantum Scattering Theory, 2nd edn. Springer (1989)
Chanane, B.: Computation of the eigenvalues of Sturm–Liouville problems with parameter dependent boundary conditions using the regularized sampling method. Math. Comput. 74, 1793–1801 (2005)
Chanane, B.: Eigenvalues of Sturm Liouville problems with discontinuity conditions inside a finite interval. Appl. Math. Comput. 188, 1725–1732 (2007)
Eastham, M.S.P.: Theory of Ordinary Differential Equations. Van Nostrand Reinhold, London (1970)
Fulton, C.T.: Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edinb. 77A, 293–308 (1977)
Hinton, D.B.: An expansion theorem for an eigenvalue problem with eigenvalue parameter in the boundary condition. Q. J. Math. 30, 33–42 (1979)
Jagerman, D.: Bounds for truncation error of the sampling expansion. SIAM. J. Appl. Math. 14, 714–723 (1966)
Likov, A.V., Mikhailov, Yu.A.: The Theory of Heat and Mass Transfer. Qosenergaizdat (Russian) (1963)
Linden, H.: Leighton’s bounds for Sturm–Liouville eigenvalues with eigenvalue parameter in the boundary conditions. J. Math. Anal. Appl. 156, 444–456 (1991)
Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia, PA (1992)
Mukhtarov, O.Sh., Kadakal, M., Altinisik, N.: Eigenvalues and eigenfunctions of discontinuous Sturm–Liouville problems with eigenparameter in the boundary conditions. Indian J. Pure Appl. Math. 34, 501–516 (2003)
Kandemir, M., Mukhtarov, O.Sh.: Discontinuous Sturm–Liouville problems containing eigenparameter in the boundary conditions. Acta Math. Sinica 34, 1519–1528 (2006)
Pruess, S., Fulton, C.T.: Mathematical software for Sturm–Liouville problems. ACM Trans. Math. Softw. 19, 360–376 (1993)
Pruess, S., Fulton, C.T., Xie, Y.: An asymptotic numerical method for a class of singular Sturm–Liouville problems. SIAM J. Numer. Anal. 32, 1658–1676 (1995)
Pryce, J.D.: Numerical Solution of Sturm–Liouville Problems. OUP (1993)
Shkalikov, A.A.: Boundary value problems for ordinary diffierential equations with a parameter in boundary conditions. Trydy Sem. Imeny I. G. Petrowsgo 9, 190–229 (Russian) (1983)
Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165–224 (1981)
Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, New York (1993)
Tharwat, M.M.: Discontinuous Sturm–Liouville problems and associated sampling theories. Abstr. Appl. Anal. 2011, 30 (2011)
Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Pergamon, Oxford and New York (1963)
Walter, J.: Regular eigenvalue problems with eigenvalue parameter in the boundary conditions. Math. Z. 133, 301–312 (1973)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tharwat, M.M., Bhrawy, A.H. & Yildirim, A. Numerical computation of eigenvalues of discontinuous Sturm–Liouville problems with parameter dependent boundary conditions using sinc method. Numer Algor 63, 27–48 (2013). https://doi.org/10.1007/s11075-012-9609-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-012-9609-3