Skip to main content
Log in

Radial orthogonality and Lebesgue constants on the disk

  • Original   Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In polynomial interpolation, the choice of the polynomial basis and the location of the interpolation points play an important role numerically, even more so in the multivariate case. We explore the concept of spherical orthogonality for multivariate polynomials in more detail on the disk. We focus on two items: on the one hand the construction of a fully orthogonal cartesian basis for the space of multivariate polynomials starting from this sequence of spherical orthogonal polynomials, and on the other hand the connection between these orthogonal polynomials and the Lebesgue constant in multivariate polynomial interpolation on the disk. We point out the many links of the two topics under discussion with the existing literature. The new results are illustrated with an example of polynomial interpolation and approximation on the unit disk. The numerical example is also compared with the popular radial basis function interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benouahmane, B., Cuyt, A.: Multivariate orthogonal polynomials, homogeneous Padé approximants and Gaussian cubature. Numer. Algorithms 24, 1–15 (2000). doi:10.1023/A:1019128823463

    Article  MathSciNet  MATH  Google Scholar 

  2. Benouahmane, B., Cuyt, A.: Properties of multivariate homogeneous orthogonal polynomials. J. Approx. Theory 113(1), 1–20 (2001). doi:10.1006/jath.2000.3565

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloom, T., Bos, L.P., Calvi, J.P., Levenberg, N.: Polynomial interpolation and approximation in ℂd (2011). http://arxiv.org/abs/1111.6418

  4. Bojanov, B., Xu, Y.: On polynomial interpolation of two variables. J. Approx. Theory 120(3), 267–282 (2003). doi:10.1016/S0021-9045(02)00023-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Bos, L., De Marchi, S., Caliari, M., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the padua points: the generating curve approach. J. Approx. Theory 143(1), 15–25 (2006). doi:10.1016/j.jat.2006.03.008

    Article  MathSciNet  MATH  Google Scholar 

  6. Bos, L., De Marchi, S., Caliari, M., Vianello, M.: On the Lebesgue constant for the Xu interpolation formula. J. Approx. Theory 141(2), 134–141 (2006). doi:10.1016/j.jat.2006.01.005

    Article  MathSciNet  MATH  Google Scholar 

  7. Caliari, M., De Marchi, S., Vianello, M.: Bivariate polynomial interpolation on the square at new nodal sets. Appl. Math. Comput. 165, 261–274 (2005). doi:10.1016/j.amc.2004.07.001

    Article  MathSciNet  MATH  Google Scholar 

  8. Cuyt, A., Benouahmane, B., Hamsapriye, Yaman, I.: Symbolic-numeric Gaussian cubature rules. Appl. Numer. Math. 61(8), 929–945 (2011). doi:10.1016/j.apnum.2011.03.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Gautschi, W.: On inverses of vandermonde and confluent vandermonde matrices. Numer. Math. 4(1), 117–123 (1962). doi:10.1007/BF01386302

    Article  MathSciNet  MATH  Google Scholar 

  10. Heinrichs, W.: Improved Lebesgue constants on the triangle. J. Comput. Phys. 207(2), 625–638 (2005). doi:10.1016/j.jcp.2005.02.002

    Article  MathSciNet  MATH  Google Scholar 

  11. Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex. SIAM J. Numer. Anal. 35(2), 655–676 (1998). doi:10.1137/S003614299630587X

    Article  MathSciNet  MATH  Google Scholar 

  12. Humberto, R.: On the selection of the most adequate radial basis function. Appl. Numer. Math. 33(3), 1573–1583 (2009). doi:10.1016/j.apm.2008.02.008

    Google Scholar 

  13. Sauer, T., Xu, Y.: Regular points for lagrange interpolation on the unit disk. Numer. Algorithms 12(2), 287–296 (1996). doi:10.1007/BF02142808

    Article  MathSciNet  MATH  Google Scholar 

  14. Sündermann, B.: On projection constants of polynomial space on the unit ball in several variables. Math. Z. 188(1), 111–117 (1984). doi:10.1007/BF0116387

    Article  MathSciNet  MATH  Google Scholar 

  15. Szabados, J., Vértesi, P.: Interpolation of Functions. World Scientific, Teaneck (1990)

    Book  MATH  Google Scholar 

  16. Xu, Y.: Funk–Hecke formulae for orthogonal polynomials on sphere and on balls. Bull. Lond. Math. Soc. 32(4), 447–457 (2000). doi:10.1112/S0024609300007001

    Article  MATH  Google Scholar 

  17. Xu, Y.: Polynomial interpolation on the unit sphere and on the unit ball. Adv. Comput. Math. 20(1–3), 247–260 (2004). doi:10.1023/A:1025851005416

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irem Yaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuyt, A., Yaman, I., Ibrahimoglu, B.A. et al. Radial orthogonality and Lebesgue constants on the disk. Numer Algor 61, 291–313 (2012). https://doi.org/10.1007/s11075-012-9615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9615-5

Keywords

Navigation