Abstract
This paper presents an implementation of the CMRH (Changing Minimal Residual method based on the Hessenberg process) iterative method suitable for parallel architectures. CMRH is an alternative to GMRES and QMR, the well-known Krylov methods for solving linear systems with non-symmetric coefficient matrices. CMRH generates a (non orthogonal) basis of the Krylov subspace through the Hessenberg process. On dense matrices, it requires less storage than GMRES. Parallel numerical experiments on a distributed memory computer with up to 16 processors are shown on some applications related to the solution of dense linear systems of equations. A comparison with the GMRES method is also provided on those test examples.
Similar content being viewed by others
References
Bai, Z., Hu, D., Reichel, L.: A Newton basis GMRES implementation. IMA J. Numer. Anal. 14, 563–581 (1994)
Bai, Z., Hu, D., Reichel, L.: Implementation of GMRES method using QR factorisation. In: Proc. Fifth SIAM Conference on Parallel Processing for Scientific Computing, pp. 84–91 (1992)
Di Brozolo, J.J., Robert, Y.: Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Comput. 11, 84–91 (1989)
Erhel, J.: A parallel GMRES version for general sparse matrices. Electron. T. Numer. Anal. 3, 160–176 (1995)
Helsing, J.: Approximate inverse preconditioners for some large dense random electrostatic interaction matrices. BIT Numer. Math. 46, 307–323 (2006)
Heyouni, M., Sadok, H.: A new implementation of the CMRH method for solving dense linear systems. J. Comput. Appl. Math. 213, 387–399 (2008)
Hessenberg, K.: Behandlung der linearen Eigenwert-Aufgaben mit Hilfe der Hamilton-Cayleychen Gleichung. Darmstadt dissertation (1940)
Message Passing Interface Forum: MPI: a message-passing interface standard. Int. J. Supercomputing Applications and High Performance Computing (1994)
Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 856–869 (1986)
Sadok, H.: CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numer. Algorithms 20, 303–321 (1999)
Sadok, H., Szyld, D.B.: A new look at CMRH and its relation to GMRES. BIT Numer. Math. 52, 485–501 (2012)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. PWS Publishing, Boston (1996). SIAM, Philadelphia (2003)
Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM T. Math. Software 38, 1–25 (2011)
Alia, A., Sadok, H., Souli, M.: CMRH method as iterative solver for boundary element acoustic systems. Eng. Anal. Bound. Elem. 36, 346–350 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Duminil, S. A parallel implementation of the CMRH method for dense linear systems. Numer Algor 63, 127–142 (2013). https://doi.org/10.1007/s11075-012-9616-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-012-9616-4