Skip to main content
Log in

Butcher algebras for Butcher systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We investigate rigorously the properties of the Butcher upper and lower algebras introduced earlier. This investigation provides a new representation of the order conditions which leads to a new approach to simplifying conditions and a way to obtain new methods of high orders explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht, P.: The theory of A-methods. Numer. Math. 47, 59–87 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.: Implicit Runge–Kutta processes. Math. Comput. 18, 50–64 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.: On Runge–Kutta processes of high order. J. Aust. Math. Soc. 4, 179–194 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley (2008)

  6. Butcher, J.C.: On fifth and sixth order explicit Runge-Kutta methods: order conditions and order barriers. Can. Appl. Math. Q. 17, 433–445 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Feagin, T.: A tenth-order Runge-Kutta method with error estimate. In: Proceedings of the IAENG Conf. on Scientific Computing (2007)

  8. Hairer, J.: A Runge-Kutta method of order 10. J. Inst. Math. Appl. 21, 47–59 (1978)

    Article  MathSciNet  Google Scholar 

  9. Hairer, J.L., Nørsett, S.P.: Solving ordinary differential equations I. Nonstiff problems, 2nd edn. Springer-Verlag (2000)

  10. Khashin, S.: A symbolic-numeric approach to the solution of the Butcher equations. Can. Appl. Math. Q. 17(3), 555–569 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Lang, S.: Algebra, Graduate Texts in Mathematics, 211 (Revised 3rd edn.). Springer, New York, ISBN 978-0-387-95385-4, MR1878556 (2002)

    Book  Google Scholar 

  12. Levin, A.: Difference Algebra. Springer, ISBN 978-1-4020-6946-8 (2008)

  13. Verner, J.: High-order explicit Runge–Kutta pairs with low stage order. Appl. Numer. Math. 22(1–3), 345–357 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Khashin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khashin, S. Butcher algebras for Butcher systems. Numer Algor 63, 679–689 (2013). https://doi.org/10.1007/s11075-012-9647-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9647-x

Keywords