Skip to main content
Log in

Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Based on a mathematical model of laser beams, we present a spectral Galerkin method for solving a Cauchy problem of the Helmholtz equation in a rectangle, where the Cauchy data pairs are given at y = 0 and boundary data are for x = 0 and x = π. The solution is sought in the interval 0 < y < 1. The spectral Galerkin method is considered as a regularization method. We then perform an analysis on the error bound for this method. For illustration, several numerical experiments are constructed to demonstrate the feasibility and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini, G.: Stable determination of a crack from boundary measurements. Proc. Roy. Soc. Edinburgh Sect. A 123, 961–984 (1993)

    Article  MathSciNet  Google Scholar 

  2. Cheng, J., Yamamoto, M.: Unique continuation on a line for harmonic functions. Inverse Probl. 14, 869–882 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Colli-Franzone, P., Guerri, L., Tentoni, S., Viganotti, C., Baruffi, S., Spaggiari, S., Taccardi, B.: A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data. Math. Biosci. 77, 353–396 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Murio, D.A.: The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley, Interscience Division, New York, New York (1993)

    Book  Google Scholar 

  5. Eldén, L., Berntsson, F., Regińska, T.: Wavelet and Fourier methods for solving the sideways heat equation. SIAM J. Sci. Comput. 21(6), 2187–2205 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer Academic Publisher, Dordrecht Boston London (1996)

    Book  MATH  Google Scholar 

  7. Hào, D.N., Hien, P.M.: Stability results for the Cauchy problem for the Laplace equation in a strip. Inverse Probl. 19, 833–844 (2003)

    Article  MATH  Google Scholar 

  8. Hào, D.N., Lesnic, D.: The Cauchy for Laplace’s equation via the conjugate gradient method. IMA J. Appl. Math. 65, 199–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hofmann, B.: Approximate source conditions in Tikhonov-Phillips regularization and consequences for inverse problems with multiplication operators. Math. Methods Appl. Sci. 29, 351–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hohage, T.: Regularization of exponentially ill-posed problems. Numer. Funct. Anal. Optim. 21, 439–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hon, Y.C., Wei, T.: Backus-Gilbert algorithm for the Cauchy problem of laplace equation. Inverse Probl. 17, 261–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mahale, P., Nair, M.T.: General source conditions for nonlinear ill-posed equations. Numer. Funct. Anal. Optim. 28, 111–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: An alternating iterative algorithm for the Cauchy problem associated to the Helmholtz equation. Comput. Meth. Appl. Mech. Eng. 192, 709–722 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marin, L.: A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations. Appl. Math. Comput. 165(2), 355–374 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: BEM solution for the Cauchy problem associated with Helmholtz-type equations by the Landweber method. Eng. Anal. Bound. Elem. 28, 1025–1034 (2004)

    Article  MATH  Google Scholar 

  16. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equations. Comput. Mech. 31, 367–377 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Marin, L., Lesnic, D.: The method of fundamental solutions for the Cauchy problem associated with two-dimensional Helmholtz-type equations. Comput. Struct. 83, 267–278 (2005)

    Article  MathSciNet  Google Scholar 

  18. Marin, L., Elliott, L., Heggs, P.J., Ingham, D.B., Lesnic, D., Wen, X.: Comparison of regularization methods for solving the Cauchy problem associated with the Helmholtz equation. Int. J. Numer. Methods Eng. 60(11), 1933–1947 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mathé, P., Pereverzev, S.: Geometry of ill-posed problems in variable Hilbert scales. Inverse Probl. 19, 789–803 (2003)

    Article  MATH  Google Scholar 

  20. Nair, M.T., Tautenhahn, U.: Lavrentiev regularization for linear ill-posed problems under general source conditions. Z. Anal. Anw. 23, 167–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Payne, L.E.: Bounds in the Cauchy problem for the Laplace’s equation. Arch. Ration. Mech. Anal. 5, 35–45 (1960)

    Article  MATH  Google Scholar 

  22. Qian, Z., Fu, C.L., Xiong, X.T.: Fourth-order modified method for the Cauchy problem for the Laplace equation. J. Comput. Appl. Math. 192, 205–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qin, H.H., Wei, T.: Modified regularization method for the Cauchy problem of the Helmholtz equation. Appl. Math. Model. 33, 2334–2348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reinhardt, H.J., Han, H., Hào, D.N.: Stability and regularization of a discrete approximation to the Cauchy problem of Laplace’s equation. SIAM J. Numer. Anal. 36, 890–905 (1999)

    Article  MathSciNet  Google Scholar 

  25. Tautenhahn, U.: Optimality for linear ill-posed problems under general source conditions. Numer. Funct. Anal. Optim. 19, 377–398 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tautenhahn, U.: On the method of Lavrentiev regularization for nonlinear ill-posed problems. Inverse Probl. 18, 191–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston and Sons, Washington, D. C. (1977)

    MATH  Google Scholar 

  28. Wei, T., Hon, Y.C., Ling, L.: Method of fundamental solutions with regularization techniques for Cauchy problems of elliptic operators. Eng. Anal. Bound. Elem. 31(4), 373–385 (2007)

    Article  MATH  Google Scholar 

  29. Xiong, X.T.: Central difference regularization method for the Cauchy problem of Laplace’s equation. Appl. Math. Comput. 181, 675–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xiong, X.T., Fu, C.L., Cheng, J.: Spectral regularization methods for solving a sideways parabolic equation within the framework of regularization theory. Math. Comput. Simul. 79, 1668–1678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangtuan Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, X., Zhao, X. & Wang, J. Spectral Galerkin method and its application to a Cauchy problem of Helmholtz equation. Numer Algor 63, 691–711 (2013). https://doi.org/10.1007/s11075-012-9648-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9648-9

Keywords

Navigation