Skip to main content
Log in

Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This study proposes two derivative-free approaches for solving systems of large-scale nonlinear equations, where the underlying functions of the systems are continuous and satisfy a monotonicity condition. First, the framework generates a specific direction then employs a backtracking line search along this direction to construct a new point. If the new point solves the problem, the process will be stopped. Under other circumstances, the projection technique constructs an appropriate hyperplane strictly separating the current iterate from the solutions of the problem. Then the projection of the new point onto the hyperplane will determine the next iterate. Thanks to the low memory requirement of derivative-free conjugate gradient approaches, this work takes advantages of two new derivative-free conjugate gradient directions. Under appropriate conditions, the global convergence result of the recommended procedures is established. Preliminary numerical results indicate that the proposed approaches are interesting and remarkably promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahookhosh, M., Amini, K., Bahrami, S.: A class of nonmonotone Armijo-type line search method for unconstrained optimization. Optimization 61(4), 387–404 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrei, N.: Another hybrid conjugate gradient algorithm for unconstrained optimization. Numer. Algor. 47, 143–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babaie-Kafaki, S., Fatemi, M., Mahdavi-Amiri, N.: Two effective hybrid conjugate gradient algorithms based on modified BFGS updates. Numer. Algor. 58(3), 315–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouaricha, A., Schnabel, R.B.: Tensor methods for large sparse systems of nonlinear equations. Math. Program. 82, 377–400 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Buhmiler, S., Krejić, N., Lužanin, Z.: Practical quasi-Newton algorithms for singular nonlinear systems. Numer. Algor. 55, 481–502 (2010)

    Article  MATH  Google Scholar 

  7. Cheng, W.: A PRP type method for systems of monotone equations. Math. Comput. Modell. 50, 15–20 (2009)

    Article  MATH  Google Scholar 

  8. Cheng, W., Liu, Q.: Sufficient descent nonlinear conjugate gradient methods with conjugacy condition. Numer. Algor. 53, 113–131 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dennis, J.E.: On the convergence of Broyden’s method for nonlinear systems of equations. Math. Comput. 25(115), 559–567 (1971)

    MathSciNet  MATH  Google Scholar 

  10. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs (1983)

    MATH  Google Scholar 

  11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Programm. 91, 201–213 (2002)

    Article  MATH  Google Scholar 

  12. Fasano, G., Lampariello, F., Sciandrone, M.: A truncated nonmonotone Gauss–Newton method for large-scale nonlinear least-squares problems. Comput. Optim. Appl. 34, 343–358 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grippo, L., Sciandrone, M.: Nonmonotone derivative-free methods for nonlinear equations. Comput. Optim. Appl. 37, 297–328 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iusem, A.N., Solodov, M.V.: Newton-type methods with generalized distances for constrained optimization. Optimization 41, 257–278 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kanzow, C., Yamashita, N., Fukushima, M.: Levenberg–Marquardt methods for constrained nonlinear equations with strong local convergence properties. J. Comput. Appl. Math. 172, 375–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MATH  Google Scholar 

  17. La Cruz, W., Raydan, M.: Nonmonotone spectral methods for large-scale nonlinear systems. Optim. Methods Softw. 18, 583–599 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–166 (1944)

    MathSciNet  MATH  Google Scholar 

  19. Li, D., Fukushima, M.: A global and superlinear convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37, 152–172 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, D.H., Wang, X.L.: A modified Fletcher-Reeves-type derivative-free method for symetric nonlinear equations. Numer. Algebra Control Optim. 1(1), 71–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Q., Li, D.H.: A class of derivative-free methods for large-scale nonlinear monotone equations. IMA J. Numer. Anal. 31, 1625–1635 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  24. Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Solodov, M.V., Svaiter, B.F.: A globally convergent inexact Newton method for systems of monotone equations. In: Fukushima, M., Qi, L. (eds.) Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, pp. 355–369. Kluwer Academic (1998)

  27. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. J. Convex Anal. 6, 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Toint, Ph.L.: Numerical solution of large sets of algebraic nonlinear equations. Math. Comput. 46(173), 175–189 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tong, X.J., Qi, L.: On the convergence of a trust-region method for solving constrained nonlinear equations with degenerate solutions. J. Optim. Theory Appl. 123(1), 187–211 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, C.W., Wang, Y.J., Xu, C.L.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Methods Oper. Res. 66, 33–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, Q.R., Peng, X.Z., Li, D.H.: A globally convergent derivative-free method for solving large-scale nonlinear monotone equations. J. Comput. Appl. Math. 234, 649–657 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, G., Guan, L., Chen, W.: Spectral conjugate gradient methods with sufficient descent property for large-scale unconstraned optimization. Optim. Methods Softw. 23(2), 275–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu, Z.S., Lina, J., Sun, J., Xiao, Y.H., Liu, L., Li, Z.H.: Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl. Numer. Math. 59, 2416–2423 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yuan, G.L., Wei, Z.X., Lu, X.W.: A BFGS trust-region method for nonlinear equations. Computing 92(4), 317–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, Y.: Subspace methods for large scale nonlinear equations and nonlinear least squares. Optim. Eng. 10, 207–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, H.C., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14, 1043–1056 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, J., Wang, Y.: A new trust region method for nonlinear equations. Math. Methods Oper. Res. 58, 283–298 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, L., Zhou, W.J.: Spectral gradient projection method for solving nonlinear monotone equations. J. Comput. Appl. Math. 196, 478–484 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, L., Zhou, W., Li, D.H.: Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw. 22(4), 697–711 (2009)

    Article  MathSciNet  Google Scholar 

  41. Zhao, Y.B., Li, D.: Monotonicity of fixed point and normal mappings associated with variational inequality and its application. SIAM J. Optim. 11, 962–973 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou, G., Toh, K.C.: Superlinear convergence of a Newton-type algorithm for monotone equations. J. Optim. Theory Appl. 125, 205–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhou, W., Li, D.H.: A globally convergent BFGS method for nonlinear monotone equations without any merit functions. Math. Comput. 77, 2231–2240 (2008)

    Article  MATH  Google Scholar 

  44. Zhou, W.J., Li, D.H.: Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 25, 89–96 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyvan Amini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahookhosh, M., Amini, K. & Bahrami, S. Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations. Numer Algor 64, 21–42 (2013). https://doi.org/10.1007/s11075-012-9653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9653-z

Keywords

Navigation