Skip to main content
Log in

Blind image deconvolution using a banded matrix method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we study the blind image deconvolution problem in the presence of noise and measurement errors. We use a stable banded matrix based approach in order to robustly compute the greatest common divisor of two univariate polynomials and we introduce the notion of approximate greatest common divisor to encapsulate the above approach, for blind image restoration. Our method is analyzed concerning its stability and complexity resulting to useful conclusions. It is proved that our approach has better complexity than the other known greatest common divisor based blind image deconvolution techniques. Examples illustrating our procedures are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, A., Eldar, Y.C.: Regularization in regression with bounded noise: a Chebyshev center approach. SIAM J. Matrix Anal. Appl. 29, 606–625 (2007)

    Article  MathSciNet  Google Scholar 

  2. Ayers, G.R., Dainty, J.C.: Iterative blind deconvolution method and its applications. Opt. Lett. 13, 547–549 (1988)

    Article  Google Scholar 

  3. Barnett, S.: Greatest common divisor from generalized Sylvester resultant matrices. Linear Multilinear Algebra 8, 271–279 (1980)

    Article  MATH  Google Scholar 

  4. Chatterjee, P.: Denoising using the K-SVD method. Course Web Pages, EE 264: Image Processing and Reconstruction, pp. 1–12 (2007)

  5. Cooley, J.W., James W., Tukey W.J.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MATH  Google Scholar 

  6. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising with block-matching and 3D filtering. In: Proceedings of Electronic Imaging, Proc. SPIE 6064, No 6064A-30, vol. 14. San Jose, USA (2006)

  7. Datta, N.B.: Numerical Linear Algebra and Applications, 2nd edn. SIAM, Philadelphia (2010)

    Book  MATH  Google Scholar 

  8. El-Khamy, S.E., Hadhood, M.M., Dessouky, M.I., Salam, B.M., Abd El-Samie, F.E.: A Greatest common divisor approach to blind super-resolution reconstruction of images. J. Mod. Opt. 53, 1027–1039 (2006)

    Article  MATH  Google Scholar 

  9. Fiori, S.: A fast fixed-point neural blind deconvolution algorithm. IEEE Trans. Neural Netw. 15, 455–459 (2004)

    Article  Google Scholar 

  10. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality deblocking of compressed color images. IEEE Trans. Image Process. 16, 1057–7149 (2007)

    Article  Google Scholar 

  11. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE 93, 216–231 (2005)

    Article  Google Scholar 

  12. Gentleman, W.M., Sande, G.: Fast fourier transforms-for fun and profit. Proc. AFIPS 29, 563–578 (1966)

    Google Scholar 

  13. Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, New York (1992)

    Google Scholar 

  14. He, L., Marquina, A., Osher, S.J.: Blind deconvolution using TV regularization and bregman iteration. Int. J. Imag. Syst. Technol. 15, 74–83 (2005)

    Article  Google Scholar 

  15. Heindl, A.R.: Fourier transform, polynomial GCD, and image restoration. Master Thesis for Clemson University, Department of Mathematical Sciences (2005)

  16. Heideman, M.T., Burrus, C.S.: On the number of multiplications necessary to compute a length-2n DFT. IEEE Trans. Acoust. Speech. Signal Process. 34, 91–95 (1986)

    Article  MathSciNet  Google Scholar 

  17. Kervrann, C., Boulanger, J.: Local adaptivity to variable smoothness for exemplar-based image regularization and representation. Int. J. Comput. Vis. 79, 45–69 (2006)

    Article  Google Scholar 

  18. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3), 43–64 (1996)

    Article  Google Scholar 

  19. Kundur, D., Hatzinakos, D.: A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE Trans. Signal Process. 46, 375–390 (1998)

    Article  MathSciNet  Google Scholar 

  20. Mathis, H., Douglas, C.S.: Bussgang blind deconvolution for impulsive signals. IEEE Trans. Signal Process. 51, 1905–1915 (2003)

    Article  MathSciNet  Google Scholar 

  21. Karcanias, N., Mitrouli, M., Triantafyllou, D.: Matrix pencil methodologies for computing the greatest common divisor of polynomials: hybrid algorithms and their performance. Int. J. Control 79, 1447–1461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, Y., Kim, S., Kim, M.: The derivation of a new blind equalization algorithm. ETRI J. 18, 53–60 (1996)

    Article  Google Scholar 

  23. Lundy, T., Van Buskirk, J.: A new matrix approach to real FFTs and convolutions of length 2k. Computing 80, 23–45 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Triantafyllou, D., Mitrouli, M.: On rank and null space computation of the generalized Sylvester matrix. Numer. Algorithms 54, 297–324 (2009)

    Article  MathSciNet  Google Scholar 

  25. Nagy, G.J., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a Matlab object-oriented approach. Numer. Algorithms 36, 73–93 (2003)

    Article  MathSciNet  Google Scholar 

  26. Pillai, S.U., Liang, B.: Blind image deconvolution using a robust GCD approach. IEEE Trans. Image Process. 8, 295–301 (1999)

    Article  Google Scholar 

  27. Abad, J.O., Morigi, S., Reichel, L., Sgallari, F.: Alternating Krylov subspace image restoration methods. J. Comput. Appl. Math. 236(8), 2049–2062 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schatzman, C.J.: Accuracy of the discrete fourier transform and the fast fourier transform. SIAM J. Sci. Comput. 17, 1150–1166 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. van der Veen, A.J., Paulraj, A.: An analytical constant modulus algorithm. IEEE Trans. Signal Process. 44, 1–19 (1999)

    Google Scholar 

  30. Vermon, D.: Machine Vision. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  31. Chan, F.T., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilena Mitrouli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danelakis, A., Mitrouli, M. & Triantafyllou, D. Blind image deconvolution using a banded matrix method. Numer Algor 64, 43–72 (2013). https://doi.org/10.1007/s11075-012-9654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9654-y

Keywords

Mathematics Subject Classifications (2010)

Navigation