Skip to main content
Log in

Laguerre collocation solutions to boundary layer type problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper a Laguerre collocation type method based on usual Laguerre functions is designed in order to solve high order nonlinear boundary value problems as well as eigenvalue problems, on semi-infinite domain. The method is first applied to Falkner–Skan boundary value problem. The solution along with its first two derivatives are computed inside the boundary layer on a fine grid which cluster towards the fixed boundary. Then the method is used to solve a generalized eigenvalue problem which arise in the study of the stability of the Ekman boundary layer. The method provides reliable numerical approximations, is robust and easy implementable. It introduces the boundary condition at infinity without any truncation of the domain. A particular attention is payed to the treatment of boundary conditions at origin. The dependence of the set of solutions to Falkner–Skan problem on the parameter embedded in the system is reproduced correctly. For Ekman eigenvalue problem, the critical Reynolds number which assure the linear stability is computed and compared with existing results. The leftmost part of the spectrum is validated using QZ as well as some Jacobi–Davidson type methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheson, D.J.: Elementary Fluid Dynamics. Clarendon Press, Oxford (1992)

    Google Scholar 

  2. Allen, L., Bridges, T.J.: Hydrodynamic stability of the Ekman boundary layer including interaction with a compliant surface: a numerical framework. Eur. J. Mech. B Fluids 22, 239–258 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ascher, U., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  4. Bernardy, C., Maday, Y.: Spectral methods. In: Ciarlet, P., Lions, L. (eds.) Handbook of Numerical Analysis, V.5 (Part 2). North-Holland (1997)

  5. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd ed. Dover Publications, New York (2000)

    Google Scholar 

  6. Boyd, J.P., Rangan, C., Bucksbaum, P.H.: Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier sine method with Laguerre series and rational Chebyshev expansions. J. Comput. Phys. 188, 56–74 (2003)

    Article  MATH  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New-York (1987)

    Google Scholar 

  8. Cebeci, T., Cousteix, J.: Modeling and Computation of Boundary Layer Flows. Horizons Publishing, Long Beach, CA and Springer, Heidelberg (1998)

    Google Scholar 

  9. Cebeci, T., Shao, J.P.: A non-iterative method for boundary-layer equations—Part II: two-dimensional laminar and turbulent flows. Int. J. Numer. Methods Fluids (2003). doi:10.1002/fld.560

    MATH  Google Scholar 

  10. Fang, T., Zhang, J.: An exact analytical solution of the Falkner–Skan equation with mass transfer and wall stretching. Int. J. Nonlinear Mech. 43, 1000–1006 (2008)

    Article  Google Scholar 

  11. Fang, T., Yao, S., Zhang, J., Zhong, Y., Tao, H.: Momentum and heat transfer of the Falkner–Skan flow with algebraic decay: an analytical solution. Commun. Nonlinear Sci. 17, 2476–2488 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finch, S.: Prandtl–Blasius Flow. http://algo.inria.fr/csolve/bla.pdf (2008). Accessed 12 June 2012

  13. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  14. Funaro, D.: Polynomial Approximation for Differential Problems. Springer, Berlin (1992)

    Google Scholar 

  15. Gheorghiu, C.I.: SpectralMethods for Differential Problems. Casa Cartii de Stiinta Publishing House, Cluj-Napoca (2007)

    MATH  Google Scholar 

  16. Gheorghiu, C.I., Dragomirescu, I.F.: Spectral methods in linear stability. Application to thermal convection with variable gravity field. Appl. Numer. Math. (2009). doi:10.1016/j.apnum.2008.07.004

    MathSciNet  MATH  Google Scholar 

  17. Greenberg, L., Marletta, M.: The Ekman flow and related problems: spectral theory and numerical analysis. Math. Proc. Camb. Philos. Soc. 136, 719–764 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hochstenbach, M.E., Plestenjak, B.: Backward errors, condition numbers, and pseudospectra for the multiparameter eigenvalue problems. Linear Algebra Appl. 375, 63–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoepffner, J.: Implementation of boundary conditions. http://www.lmm.jussieu.fr/~hoepffner/boundarycondition.pdf (2010). Accessed 25 Aug 2011

  20. Ioss, G., Bruun, H.: True, Bifurcation of the stationary Ekman flow into a stable periodic flow. Arch. Ration. Mech. Anal. 68, 227–256 (1978)

    Google Scholar 

  21. Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell, New York (1968)

    MATH  Google Scholar 

  22. Liao, S.-J.: A uniformly valid analytic solution of two dimensional viscous flow over a semi-infinite plat plate. J. Fluid Mech. 385, 101–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lilly, D.K.: On the instability of Ekman boundary flow. J. Atmos. Sci. 23, 481–494 (1966)

    Article  Google Scholar 

  24. Magyari, E.: Falkner–Skan flows past moving boundaries: an exactly solvable case. Acta Mech. 203, 13–21 (2009)

    Article  MATH  Google Scholar 

  25. Melander, M.V.: An algorithmic approach to the linear stability of the Ekman layer. J. Fluid Mech. 132, 283–293 (1983)

    Article  MATH  Google Scholar 

  26. Motsa, S.S., Sibanda, P.: An efficient numerical method for solving Falkner–Skan boundary layer flows. Int. J. Numer. Methods Fluids (2011). doi:10.1002/fld.2570

    Google Scholar 

  27. van Noorden, T., Rommes, J.: Computing a partial generalized real Schur form using the Jacobi–Davidson method. Numer. Linear Algebra Appl. (2007). doi:10.1002/nla.523

    MathSciNet  Google Scholar 

  28. Ockendon, H., Ockendon, J.R.: Viscous Flow. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  29. Parand, K., Dehghan, M., Pirkhedri, A.: Sinc-collocation methods for solving the Blasius equation. Phys. Lett. A 373, 1237–1244 (2009)

    MathSciNet  Google Scholar 

  30. Parand, K., Dehghan, M., Pirkhedri, A.: The use of sinc-collocation method for solving Falkner–Skan boundary-layer equation. Int. J. Numer. Methods Fluids (2010). doi:10.1002/fld.2493

    Google Scholar 

  31. Riley, N., Weidman, P.D.: Multiple solutions of the Falkner–Skan equation past a stretching boundary. SIAM J. Appl. Math. 49, 1350–1358 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosales-Vera, M., Valencia, A.: Solutions of Falkner–Skan equation with heat transfer by Fourier series. Int. Commun. Heat Mass Transf. 37, 761–765 (2010)

    Article  Google Scholar 

  33. Rosenhead, L. (ed.): Laminar Boundary Layers. Clarendon Press, Oxford (1963). Paperback edition: Dover, New York (1988)

    MATH  Google Scholar 

  34. Sachdev, P.L., Kudenatti, R.B., Bujurke, N.M.: Exact analytic solution of a boundary value problem for the Falkner–Skan equation. Stud. Appl. Math. 120, 1–16 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schlichting, H.: Boundary Layer Theory, 4th ed. McGraw-Hill, New York (1960)

    MATH  Google Scholar 

  36. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001)

    Book  MATH  Google Scholar 

  37. Shen, J.: Stable and efficient spectral methods in unbounded domains using Laguerre functions. SIAM J. Numer. Anal. 38, 1113–1133 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shen, J., Wang, L.-L.: Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys. 5, 195–241 (2009)

    MathSciNet  Google Scholar 

  39. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods. Algorithms, Analysis and Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  40. Sleijpen, G.L.G.: Jdqz. http://www.math.uu.nl/people/sleijpen/JD_software/JDQZ.html (2004). Accessed 20 Nov 2011

  41. Trefethen, L.N., Trefethen, A.E., Reddy, S.C., Discroll, T.A.: Hydrodynamic stability without eigenvalues. Science 261, 578–584 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Trefethen, L.N.: Computation of pseudospectra. Acta Numer. 8, 247–295 (1999)

    Article  MathSciNet  Google Scholar 

  43. Weideman, J.A.C., Reddy, S.C.: A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26, 465–519 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calin-Ioan Gheorghiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gheorghiu, CI. Laguerre collocation solutions to boundary layer type problems. Numer Algor 64, 385–401 (2013). https://doi.org/10.1007/s11075-012-9670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9670-y

Keywords