Skip to main content
Log in

A note on the alternate trapezoidal quadrature method for Fredholm integral eigenvalue problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider an approximate method based on the alternate trapezoidal quadrature for the eigenvalue problem given by a periodic singular Fredholm integral equation of second kind. For some convolution-type integral kernels, the eigenvalues of the discrete eigenvalue problem provided by the alternate trapezoidal quadrature method have multiplicity at least two, except up to two eigenvalues of multiplicity one. In general, these eigenvalues exhibit some symmetry properties that are not necessarily observed in the eigenvalues of the continuous problem. For a class of Hilbert-type kernels, we provide error estimates that are valid for a subset of the discrete spectrum. This subset is further enlarged in an improved quadrature method presented herein. The results are illustrated through numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, G., Nachbin, A.: Stable methods for vortex sheet motion in the presence of surface tension. SIAM J. Sci. Comput. 19(5), 1737–1766 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beale, J., Hou, T.Y., Lowengrub, J.: Convergence of a boundary integral method for water waves. SIAM J. Numer. Anal. 33(5), 1797–1843 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berrut, J.P.: A formula for the error of finite sinc interpolation with an even number of nodes. Numer. Algorithm 56(1), 143–157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, Y., Huang, M., Liu, L., Xu, Y.: Hybrid collocation methods for Fredholm integral equations with weakly singular kernels. Appl. Numer. Math. 57(5–7), 549–561 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. Criscuolo, G.: A new algorithm for Cauchy principal value and Hadamard finite-part integrals. J. Comput. Appl. Math. 78(2), 255–275 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. De Bonis, M., Mastroianni, G.: Projection methods and condition numbers in uniform norm for Fredholm and Cauchy singular integral equations. SIAM J. Numer. Anal. 44(4), 1351–1374 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, J.: On the collocation methods for singular integral equations with Hilbert kernel. Math. Comput. 78(266), 891–928 (2009).

    MATH  Google Scholar 

  8. Epstein, C.L.: How well does the finite Fourier transform approximate the Fourier transform?Commun. Pure Appl. Math. 58(10), 1421–1435 (2005).

    Article  MATH  Google Scholar 

  9. Feng, H., Zhang, X., Li, J.: Numerical solution of a certain hypersingular integral equation of the first kind. BIT 51(3), 609–630 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114(2), 312–338 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. Iorio, R., Iorio, V.: Fourier Analysis and Partial Differential Equations. Cambridge University Press, Cambridge, MA (2001).

    MATH  Google Scholar 

  12. Katznelson, Y.: An Introduction to Harmonic Analysis, 2nd edn. Dover, New York (1976).

    Google Scholar 

  13. Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3(2), 201–231 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  14. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press, Cambridge, MA (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Oliveira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, S., Ruiz de Zárate, A., da Rocha, A. et al. A note on the alternate trapezoidal quadrature method for Fredholm integral eigenvalue problems. Numer Algor 62, 601–614 (2013). https://doi.org/10.1007/s11075-012-9681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9681-8

Keywords

Mathematics Subject Classifications (2010)