Skip to main content
Log in

Algorithm for forming derivative-free optimal methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We develop a simple yet effective and applicable scheme for constructing derivative free optimal iterative methods, consisting of one parameter, for solving nonlinear equations. According to the, still unproved, Kung-Traub conjecture an optimal iterative method based on k+1 evaluations could achieve a maximum convergence order of \(2^{k}\). Through the scheme, we construct derivative free optimal iterative methods of orders two, four and eight which request evaluations of two, three and four functions, respectively. The scheme can be further applied to develop iterative methods of even higher orders. An optimal value of the free-parameter is obtained through optimization and this optimal value is applied adaptively to enhance the convergence order without increasing the functional evaluations. Computational results demonstrate that the developed methods are efficient and robust as compared with many well known methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S., Candela, V.: A class of quasi-Newton generalized Steffensen methods on Banach spaces. J. Comput. Appl. Math. 149(2), 397–406 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amat, S., Busquier, S.: Convergence and numerical analysis of a family of two-step Steffensen’s methods. Comput. Math. Appl. 49(1), 13–22 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amat, S., Busquier, S.: A two-step Steffensen’s method under modified convergence conditions. J. Math. Anal. Appl. 324(2), 1084–1092 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Argyros, I.K.: Computational theory of iterative methods, series. In: Chui, C.K., Wuytack, L. (eds.) Studies in computational mathematics, vol. 15. Elsevier Publ. Comp., New York (2007)

    Google Scholar 

  5. ARPREC: C++/Fortran-90 arbitrary precision package, Available at: http://crd.lbl.gov/dhbailey/mpdist/

  6. Bailey, D.H.: High-precision floating-point arithmetic in scientific computation. Comput. Sci. Eng. 7(3), 54–61 (2005)

    Article  Google Scholar 

  7. Bailey, D.H., Borwein, J.M.: High-precision computation and mathematical physics. In: XII Advanced Computing and Analysis Techniques in Physics Research, Erice, Italy (2008)

    Google Scholar 

  8. Bi, W., Ren, H., Wu, Q.: Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math 225, 105–112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, K.-W.: Generalization of Steffensen’s method for operator equations in Banach space. Comment. Math. Univ. Carol. 5(2), 47–77 (1964)

    Google Scholar 

  10. Chun, C.: Some fourth-order iterative methods for solving nonlinear equations. Appl. Math. Comput 195(2), 454–459 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Cordero, A., Torregrosa, J.R.: A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. 217(19), 7653–7659 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cordero, A., Huesoa, J.L., Martínez, E., Torregrosa, J.R. : Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Math. Comput. Model. 57(7–8), 1950–1956 (2013)

    Article  Google Scholar 

  13. Dzunic, J., Petković, M.S., Petković, L.D.: Three-point methods with and without memory for solving nonlinear equations. Appl. Math. Comput. 218(9), 4917–4927 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd Edn. SIAM (2008)

  15. Grau-Sánchez, M., Noguera, M., Grau, À., Herrero, J.R.: On new computational local orders of convergence. Appl Math Lett 25(12), 2023–2030 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jarratt, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comp. 20(95), 434–437 (1966)

    Article  MATH  Google Scholar 

  17. Kou, J., Li, Y., Wang, X.: A composite fourth-order iterative method. Appl. Math. Comput. 184, 471–475 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. King, R.: A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Math. 21, 634–651 (1974)

    Article  MathSciNet  Google Scholar 

  20. Khattri, S.K., Log, T.: Derivative free algorithm for solving nonlinear equations. Computing 92(2), 169–179 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Khattri, S.K., Log, T.: Constructing third-order derivative-free iterative methods. Int. J. Comput. Math. 88(7), 1509–1518 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Khattri, S.K.: Optimal eighth order iterative methods. Math. Comput. Sci. 5(2), 237–243 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Khattri, S.K., Argyros, I.K.: Sixth order derivative free family of iterative methods. Appl. Math. Comput. 217(12), 5500–5507 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Li, X., Mu, C., Ma, J., Wang, C.: Sixteenth order method for nonlinear equations. Appl. Math. Comput. 215(10), 3769–4054 (2009)

    MathSciNet  Google Scholar 

  25. Ostrowski, A.M.: Solution of equations and systems of equations. Academic, New York (1966)

    MATH  Google Scholar 

  26. Pǎvǎloiu, I.: Sur une généralisation de la méthode de Steffensen. Revue d’analyse Numérique et de théorie de l’approximation 21(1), 59–65 (1992)

    MathSciNet  Google Scholar 

  27. Petković, M.S., Ilic, S., Dzunic, J.: Derivative free two-point methods with and without memory for solving nonlinear equations. Appl. Math. Comput. 217(5), 1887–1895 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Petković, M.S.: On a general class of multipoint root-finding methods of high computational efficiency. SIAM. J. Numer. Anal. 47(6), 4402–4414 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Peng, Y., Feng, H., Li, Q., Zhang, X.: A fourth-order derivative-free algorithm for nonlinear equations. J. Comput. Appl. Math. 235, 2551–2559 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Soleymani, F., Sharifi, M., Mousavi, B.S.: An Improvement of Ostrowski’s and King’s techniques with optimal convergence order eight. J. Optim. Theory Appl. 153(1), 225–236 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Steffensen, J.F.: Remarks on iteration. Scand. Actuar. J. 1933(1), 64–72 (1933)

    Article  MathSciNet  Google Scholar 

  32. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, New York (1964)

    MATH  Google Scholar 

  33. Thukral, R.: Eighth-order iterative methods without derivatives for solving nonlinear equations. ISRN Appl. Math. (2011). http://www.hindawi.com/isrn/appmath/2011/693787/

  34. Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput 217(23), 9592–9597 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Khattri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khattri, S.K., Steihaug, T. Algorithm for forming derivative-free optimal methods. Numer Algor 65, 809–824 (2014). https://doi.org/10.1007/s11075-013-9715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9715-x

Keywords

Mathematics Subject Classification (2010)

Navigation