Skip to main content
Log in

Robust continuation methods for tracing solution curves of parameterized systems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The continuation methods are efficient methods to trace solution curves of nonlinear systems with parameters, which are common in many fields of science and engineering. Existing continuation methods are unstable for some complicated cases in practice, such as the case that solution curves are close to each other or the case that the curve turns acutely at some points. In this paper, a more robust corrector strategy—sphere corrector is presented. Using this new strategy, combining various predictor strategies and various iterative methods with local quadratic or superlinear convergence rates, robust continuation procedures for tracing curves are given. When the predictor steplength is no more than the so-called granularity of solution curves, our procedure of tracing solution curve can avoid “curve-jumping” and trace the whole solution curve successfully. Numerical experiments illustrate our method is more robust and efficient than the existing continuation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, J.C.: Numerical continuation methods and bifurcation. In: Functional Differential Equations and Approximation of Fixed Points. Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978. Lecture Notes in Math, vol. 730, pp. 1–15. Springer, Berlin (1979)

    Google Scholar 

  2. Allgower, E.L., Georg, K.: Estimates for piecewise linear approximations of implicitly defined manifolds. Appl. Math. Lett. 2(2), 111–115 (1989). doi:10.1016/0893-9659(89)8990001-3

    Article  MATH  MathSciNet  Google Scholar 

  3. Allgower, E.L., Georg, K.: Numerical Continuation Methods, Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990). An introduction

    Google Scholar 

  4. Allgower, E.L., Georg, K.: Introduction to numerical continuation methods. Classics in Applied Mathematics, vol. 45. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003). Reprint of the 1990 edition [Springer-Verlag, Berlin; MR1059455 (92a:65165)]

    Google Scholar 

  5. Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization Universitext, 2nd edn. Springer, Berlin (2006). Theoretical and practical aspects

    Google Scholar 

  6. Elhage-Hussein, A., Potier-Ferry, M., Damil, N.: A numerical continuation method based on Padé approximants. Int. J. Solids Struct. 37(46–47), 6981–7001 (2000). doi:10.1016/S0020-7683(99)00323-6. Stability, strength and stiffness in materials and structures

    Article  MATH  MathSciNet  Google Scholar 

  7. Georg, K.: On tracing an implicitly defined curve by quasi-newton steps and calculating bifurcation by local perturbations. SIAM J. Sci. Statist. Comput. 2(1), 35–50 (1981). doi:10.1137/0902004

    Article  MATH  MathSciNet  Google Scholar 

  8. Gervais, J.J., Sadiky, H.: A new steplength control for continuation with the asymptotic numerical method. IMA J. Numer. Anal. 22(2), 207–229 (2002). doi:10.1093/imanum/22.2.207

    Article  MATH  MathSciNet  Google Scholar 

  9. Gervais, J.J., Sadiky, H.: A continuation method based on a high order predictor and an adaptive steplength control. ZAMM Z. Angew. Math. Mech 84(8), 551–563 (2004). doi:10.1002/zamm.200310125

    Article  MATH  MathSciNet  Google Scholar 

  10. Huber, B., Verschelde, J.: Polyhedral end games for polynomial continuation. Numer. Algoritm. 18(1), 91–108 (1998). doi:10.1023/A:1019163811284

    Article  MATH  MathSciNet  Google Scholar 

  11. Krauskopf, B., Osinga, H.M., Galán-Vioque, J., (eds.): Numerical Continuation Methods for Dynamical Systems. Understanding Complex Systems. Springer, Dordrecht (2007). doi:10.1007/978-1-4020-6356-5. Path following and boundary value problems, Dedicated to Eusebius J. Doedel for his 60th birthday

    Google Scholar 

  12. Lahmam, H., Cadou, J.M., Zahrouni, H., Damil, N., Potier-Ferry, M.: High-order predictorccorrector algorithms. Int. J. Numer. Methods Eng. 55(6), 685–704 (2002). doi:10.1002/nme.524

    Article  MATH  Google Scholar 

  13. Lan, G., Monteiro, R.D.C., Tsuchiya, T.: A polynomial predictor-corrector trust-region algorithm for linear programming. SIAM J. Optim. 19(4), 1918–1946 (2008). doi:10.1137/070693461

    Article  MathSciNet  Google Scholar 

  14. Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comput. Sci. 359(1–3), 111–122 (2006). doi:10.1016/j.tcs.2006.02.018. http://www.sciencedirect.com/science/article/pii/S030439750600168X

    Article  MATH  MathSciNet  Google Scholar 

  15. Lundberg, B.N., Poore, A.B.: Variable order Adams-Bashforth predictors with an error-stepsize control for continuation methods. SIAM J. Sci. Statist. Comput. 12(3), 695–723 (1991). doi:10.1137/0912037

    Article  MATH  MathSciNet  Google Scholar 

  16. Mackens, W.: Numerical differentiation of implicitly defined space curves. Computing 41(3), 237–260 (1989). doi:10.1007/BF02259095

    Article  MATH  MathSciNet  Google Scholar 

  17. Morgan, A., Sommese, A., Wampler, C.: A power series method for computing singular solutions to nonlinear analytic systems. Numer. Math. 63(1), 391–409 (1992). doi:10.1007/BF01385867

    Article  MATH  MathSciNet  Google Scholar 

  18. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  19. Ojika, T.: Modified deflation algorithm for the solution of singular problems. i. a system of nonlinear algebraic equations. J. Math. Anal. Appl. 123(1), 199–221 (1987). doi:10.1016/0022-247X(87)90304-0. http://www.sciencedirect.com/science/article/pii/0022247X87903040

    Article  MATH  MathSciNet  Google Scholar 

  20. Rheinboldt, W.C.: Numerical continuation methods for finite element applications, Formulations and Computational Algorithms in Finite Element Analysis (U.S.-Germany Sympos., Mass. Inst. Tech., Cambridge, Mass., 1976), pp 599–631. MIT Press, Cambridge (1977)

    Google Scholar 

  21. Salahi, M., Peng, J., Terlaky, T.: On Mehrotra-type predictor-corrector algorithms. SIAM J. Optim. 18(4), 1377–1397 (2007). doi:10.1137/050628787

    Article  MATH  MathSciNet  Google Scholar 

  22. Salahi, M., Terlaky, T.: Mehrotra-type predictor-corrector algorithm revisited. Optim. Methods Softw. 23(2), 259–273 (2008). doi:10.1080/10556780701661393

    Article  MATH  MathSciNet  Google Scholar 

  23. Schwetlick, H., Cleve, J.: Higher order predictors and adaptive steplength control in path following algorithms. SIAM J. Numer. Anal. 24(6), 1382–1393 (1987). doi:10.1137/0724089

    Article  MATH  MathSciNet  Google Scholar 

  24. Sim, C.K.: Superlinear convergence of an infeasible predictor-corrector path-following interior point algorithm for a semidefinite linear complementarity problem using the Helmberg-Kojima-Monteiro direction. SIAM J. Optim. 21(1), 102–126 (2011). doi:10.1137/090779279

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Dong.

Additional information

Bo Dong’s research was supported in part by the National Natural Science Foundation of China (Grant No. 11101067), TianYuan Special Funds of the National Natural Science Foundation of China (Grant No. 11026164) and the Fundamental Research Funds for the Central Universities.

Bo Yu’s research was supported in part by the Major Research Plan of the National Natural Science Foundation of China(No.91230103), the National Nature Science Foundation of China (Grant No. 11171051) and the Fundamental Research Funds for the Central Universities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Yu, B. & Dong, B. Robust continuation methods for tracing solution curves of parameterized systems. Numer Algor 65, 825–841 (2014). https://doi.org/10.1007/s11075-013-9716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9716-9

Keywords

Mathematics Subject Classification (2010)

Navigation