Skip to main content

Advertisement

Log in

A factored variant of the Newton iteration for the solution of algebraic Riccati equations via the matrix sign function

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper we introduce a variant of the Newton iteration for the matrix sign function that results in an efficient numerical solver for a certain class of algebraic Riccati equations (AREs). In particular, when the Hamiltonian matrix associated with the ARE can be composed as \(\left [\begin {array}{llll}{A}&{BB^{T}}\\{C^{T}C}&{-A^{T}}\end {array}\right ]\), with B and \(C^{T}\) having a much larger number of rows than columns, the new algorithm exploits the special structure of the off-diagonal blocks to yield an alternative factored Newton iteration which reduces the cost per iteration by a factor of up to 8 (16 in case A is symmetric negative definite) w.r.t. the conventional iterative scheme. Experiments with a large collection of benchmark examples show that the factored iteration attains numerical accuracy similar to that of the conventional Newton iteration as well as the structure-preserving doubling algorithm. High-performance implementations of these methods, making heavy use of LAPACK linked to a multi-threaded implementation of BLAS, demonstrate the clear advantage of the new iteration on a 48-core AMD-based platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abels, J., Benner, P.: CAREX– a collection of benchmark examples for continuous-time algebraic Riccati equations (version 2.0). SLICOT Working Note 1999-14. Available from http://www.slicot.org (1999)

  2. Abels, J., Benner, P.: DAREX– a collection of benchmark examples for discrete-time algebraic Riccati equations (version 2.0). SLICOT Working Note 1999-15. Available from http://www.slicot.org (1999)

  3. Anderson, B., Moore, J.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

  4. Anderson, E., Bai, Z., Demmel, J., Dongarra, J.E., DuCroz, J., Greenbaum, A., Hammarling, S., McKenney, A.E., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  5. Benner, P.: Contributions to the numerical solution of algebraic Riccati equations and related eigenvalue problems. Logos–Verlag, Berlin, Germany (1997). Also: Dissertation, Fakultät für Mathematik, TU Chemnitz–Zwickau (1997)

  6. Benner, P., Ezzatti, P., Kressner, D., Quintana-Ortí, E., Remón, A.: A mixed-precision algorithm for the solution of Lyapunov equations on hybrid CPU-GPU platforms. Parallel Comput. 8, 439–450 (2011)

    Article  Google Scholar 

  7. Benner, P., Mehrmann, V., Sorensen, D. (eds.).: Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol. 45. Springer-Verlag, Berlin/Heidelberg, Germany (2005)

    Book  Google Scholar 

  8. Benner, P., Quintana-Ortí, E.: Solving stable generalized Lyapunov equations with the matrix sign function. Numer. Algorithms 20(1), 75–100 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: State-space truncation methods for parallel model reduction of large-scale systems. Parallel Comput. 29, 1701–1722 (2003)

    Article  MathSciNet  Google Scholar 

  10. Benner, P., Quintana-Ortí, E., Quintana-Ortí, G.: Solving linear-quadratic optimal control problems on parallel computers. Optim. Methods Softw. 23(6), 879–909 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bini, D., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. Fundamentals of Algorithms. Society for Industrial and Applied Mathematics (2012)

  12. Byers, R.: Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl. 85, 267–279 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems. SLICOT Working Note 2002–2. Available from http://www.slicot.org (2002)

  14. Chu, E.W., Fan, H.Y., Lin, W.W.: A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl. 396, 55–80 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gardiner, J., Laub, A.: Parallel algorithms for algebraic Riccati equations. Internat. J. Control 54(6), 1317–1333 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  17. Higham, N.: Computing the polar decomposition—with applications. SIAM J. Sci. Statist. Comput. 7, 1160–1174 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kenney, C., Laub, A.: The matrix sign function. IEEE Trans. Automat. Control 40(8), 1330–1348 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Korvink, J., Rudnyi, E.: Oberwolfach Benchmark Collection. Chapter 11 (pages 311–315) of [7] (2005)

  20. Kučera, V.: Analysis and Design of Discrete Linear Control Systems. Academia, Prague, Czech Republic (1991)

  21. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Oxford University Press, Oxford (1995)

    Google Scholar 

  22. Roberts, J.: Linear model reduction and solution of the algebraic Riccati equation by use of the sign function. Internat. J. Control 32, 677–687 (1980). (Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering Department, 1971)

    Article  MATH  MathSciNet  Google Scholar 

  23. Saberi, A., Sannuti, P., Chen, B.: \(H_{2}\) Optimal Control. Prentice-Hall, Hertfordshire (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Remón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benner, P., Ezzatti, P., Quintana-Ortí, E. et al. A factored variant of the Newton iteration for the solution of algebraic Riccati equations via the matrix sign function. Numer Algor 66, 363–377 (2014). https://doi.org/10.1007/s11075-013-9739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9739-2

Keywords