Abstract
In this paper, a novel numerical method is proposed to solve specific third order ODE on semi-infinite interval. These kinds of problems often occur in laminar boundary layer with temperature dependent viscosity. Runge-Kutta method incorporating with optimization techniques is used to solve the problem. First, the semi-infinite interval is transformed into a finite interval. Second, by converting the boundary value problem, with some initial and distributed unknowns, into an optimization problem, solving the original problem is limited to solving a multiobjective optimization problem. Third, we use shooting-Newton’s method for solving this optimization problem. It is shown that the Falkner-Skan problem with constant surface temperature, that arise during the solution for the laminar forced convection heat transfer from wedges to flow, can be solved accurately and simultaneously by this strategy. Numerical results for different values of wedge angle and Prandtl number are presented, which are in good agreement with some of the successful provided solutions in the literature.
Similar content being viewed by others
References
Abbasbandy, S., Hayat, T.: Solution of the MHD Falkner-Skan flow by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 3591–3598 (2009)
Alizadeh, E., Farhadi, M., Sedghi, K., Ebrahimi-Kebria, H.R., Ghafourian, A.: Solution of the Falkner-Skan equation for wedge by Adomin decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14, 724–733 (2009)
Argentina, M., Cerda, E.: Falkner-Skan approximation for gradually variable flows. Nonlinear Phenom. Compl. Syst. 9, 81 (2004)
Asaithambi, A.: Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients. J. Comput. Appl. Math. 176, 203–214 (2005)
Asaithambi, A.: Numerical solution of the Falkner-Skan equation using piecewise linear functions. Appl. Math. Comput. 159, 267273 (2004)
Bejan, A.: Convection Heat Transfer. Wiley, New York (1995)
Blasius, H.: Grenzschichten in Fl ussigkeiten mit kleiner Reibung. Z Math. Phys. 56(1), 1–37 (1908)
Eckert, E.R.G.: Die Berechnung des warmeu berganges in der laminaren grenzschicht um stromter korper. VDI-Forschungsheft 416, 1–24 (1942)
Elbashbeshy, E.M.A., Dimian, M.F.: Effect of radiation on the flow and heat transfer over a wedge with variable viscosity. Appl. Math. Comput. 132, 445–454 (2002)
Falkner, V.M., Skan, S.W.: Some approximate solutions of the boundary layer equations. Philos. Mag. 12, 865–896 (1931)
Hartree, D.R.: On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer, Part II. Proc. Camb. Philos. Soc. 33, 223–239 (1937)
Herwig, H., Wickern, G.: The effect of variable properties on laminar boundary layer flow. Warme und Stoffu bertragung 20, 47–57 (1986)
Kudenatti, R.B.: A new exact solution for boundary layer flow over a stretching plate. Int. J. Non-Linear Mech. 47, 727–733 (2012)
Kuo, B.-L.: Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method. Int. J. Heat Mass Transfer 48, 5036–5046 (2005)
Lin, H.T., Lin, L.K.: Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. Int. J. Heat Mass Transfer 30, 1111–1118 (1987)
Hossain, M.A., Munir, M.Z., Hafiz, M.S., Takhar, H.S.: Flow of viscous incompressible fluid with temperature dependent viscosity past a permeable wedge with uniform surface heat flux. Heat Mass Transfer 36, 333–341 (2000)
Hossain, M.A., Munir, M.S., Rees, D.A.S.: Flow of viscous incompressible fluid with temperature dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux. Int. J. Thermal Sci. 39, 635–644 (2000)
Nanbu, K.: Unsteady Falkner-Skan flow. J. Appl. Math. Phys. (ZAMP) 22, 1167–1172 (1971)
Nikuradse, J.: Laminare Reibunggs schicten an der langsangetr omten Platte, Monograph. Zentrale F. wiss Bericht swesen, Berlin (1942)
Pantokratoras, A.: The Falkner-Skan flow with constant wall temperature and variable viscosity. Int. J. Thermal Sci. 45, 378–389 (2006)
Parand, K., Rezaei, A.R., Ghaderi, S.M.: An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudo spectral method. Commun. Nonlinear Sci. Numer. Simul. 16(1), 274–283 (2010)
Parand, K., Shahini, M.: Mehdi Dehghan: Solution of a laminar boundary layer flow via a numerical method. Commun. Nonlinear Sci. Numer. Simul. 15, 360–367 (2010)
Prandtl, L.: Uber Flussig keits bewegung bei sehr kleiner Reibung, pp. 484–491. Verh. III. Intern. Math Kongr., Heidelberg (1904)
Schlichting, H., Gersten, K.: Boundary Layer Theory, Monograph. Springer, Germany (2000)
Van Dyke, M.: An Album of Fluid Motion. Parabolic Press, Stanford (1982)
Van Gorder, R.A., Vajravelu, K.: Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner-Skan flow. Commun. nonlinear Sci. Numer. Simul. 15, 2272–2277 (2010)
White, F.M.: Viscous Fluid Flow, 2nd edn. pp. 242–249. McGraw-Hill, NewYork (1991)
Zhang, J., Chen, B.: An iterative method for solving the Falkner-Skan equation. Appl. Math. Comput. 210(1), 215–222 (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Naseri, R., Malek, A. Optimization technique in solving laminar boundary layer problems with temperature dependent viscosity. Numer Algor 66, 663–678 (2014). https://doi.org/10.1007/s11075-013-9753-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-013-9753-4