Skip to main content
Log in

Optimization technique in solving laminar boundary layer problems with temperature dependent viscosity

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a novel numerical method is proposed to solve specific third order ODE on semi-infinite interval. These kinds of problems often occur in laminar boundary layer with temperature dependent viscosity. Runge-Kutta method incorporating with optimization techniques is used to solve the problem. First, the semi-infinite interval is transformed into a finite interval. Second, by converting the boundary value problem, with some initial and distributed unknowns, into an optimization problem, solving the original problem is limited to solving a multiobjective optimization problem. Third, we use shooting-Newton’s method for solving this optimization problem. It is shown that the Falkner-Skan problem with constant surface temperature, that arise during the solution for the laminar forced convection heat transfer from wedges to flow, can be solved accurately and simultaneously by this strategy. Numerical results for different values of wedge angle and Prandtl number are presented, which are in good agreement with some of the successful provided solutions in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasbandy, S., Hayat, T.: Solution of the MHD Falkner-Skan flow by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 3591–3598 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alizadeh, E., Farhadi, M., Sedghi, K., Ebrahimi-Kebria, H.R., Ghafourian, A.: Solution of the Falkner-Skan equation for wedge by Adomin decomposition method. Commun. Nonlinear Sci. Numer. Simul. 14, 724–733 (2009)

    Article  MATH  Google Scholar 

  3. Argentina, M., Cerda, E.: Falkner-Skan approximation for gradually variable flows. Nonlinear Phenom. Compl. Syst. 9, 81 (2004)

    MathSciNet  Google Scholar 

  4. Asaithambi, A.: Solution of the Falkner-Skan equation by recursive evaluation of Taylor coefficients. J. Comput. Appl. Math. 176, 203–214 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Asaithambi, A.: Numerical solution of the Falkner-Skan equation using piecewise linear functions. Appl. Math. Comput. 159, 267273 (2004)

    Google Scholar 

  6. Bejan, A.: Convection Heat Transfer. Wiley, New York (1995)

    Google Scholar 

  7. Blasius, H.: Grenzschichten in Fl ussigkeiten mit kleiner Reibung. Z Math. Phys. 56(1), 1–37 (1908)

    Google Scholar 

  8. Eckert, E.R.G.: Die Berechnung des warmeu berganges in der laminaren grenzschicht um stromter korper. VDI-Forschungsheft 416, 1–24 (1942)

    MathSciNet  Google Scholar 

  9. Elbashbeshy, E.M.A., Dimian, M.F.: Effect of radiation on the flow and heat transfer over a wedge with variable viscosity. Appl. Math. Comput. 132, 445–454 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Falkner, V.M., Skan, S.W.: Some approximate solutions of the boundary layer equations. Philos. Mag. 12, 865–896 (1931)

    Google Scholar 

  11. Hartree, D.R.: On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer, Part II. Proc. Camb. Philos. Soc. 33, 223–239 (1937)

    Article  Google Scholar 

  12. Herwig, H., Wickern, G.: The effect of variable properties on laminar boundary layer flow. Warme und Stoffu bertragung 20, 47–57 (1986)

    Article  Google Scholar 

  13. Kudenatti, R.B.: A new exact solution for boundary layer flow over a stretching plate. Int. J. Non-Linear Mech. 47, 727–733 (2012)

    Article  Google Scholar 

  14. Kuo, B.-L.: Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method. Int. J. Heat Mass Transfer 48, 5036–5046 (2005)

    Article  MATH  Google Scholar 

  15. Lin, H.T., Lin, L.K.: Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number. Int. J. Heat Mass Transfer 30, 1111–1118 (1987)

    Article  Google Scholar 

  16. Hossain, M.A., Munir, M.Z., Hafiz, M.S., Takhar, H.S.: Flow of viscous incompressible fluid with temperature dependent viscosity past a permeable wedge with uniform surface heat flux. Heat Mass Transfer 36, 333–341 (2000)

    Article  Google Scholar 

  17. Hossain, M.A., Munir, M.S., Rees, D.A.S.: Flow of viscous incompressible fluid with temperature dependent viscosity and thermal conductivity past a permeable wedge with uniform surface heat flux. Int. J. Thermal Sci. 39, 635–644 (2000)

    Article  Google Scholar 

  18. Nanbu, K.: Unsteady Falkner-Skan flow. J. Appl. Math. Phys. (ZAMP) 22, 1167–1172 (1971)

    Article  Google Scholar 

  19. Nikuradse, J.: Laminare Reibunggs schicten an der langsangetr omten Platte, Monograph. Zentrale F. wiss Bericht swesen, Berlin (1942)

    Google Scholar 

  20. Pantokratoras, A.: The Falkner-Skan flow with constant wall temperature and variable viscosity. Int. J. Thermal Sci. 45, 378–389 (2006)

    Article  Google Scholar 

  21. Parand, K., Rezaei, A.R., Ghaderi, S.M.: An approximate solution of the MHD Falkner-Skan flow by Hermite functions pseudo spectral method. Commun. Nonlinear Sci. Numer. Simul. 16(1), 274–283 (2010)

    Article  MathSciNet  Google Scholar 

  22. Parand, K., Shahini, M.: Mehdi Dehghan: Solution of a laminar boundary layer flow via a numerical method. Commun. Nonlinear Sci. Numer. Simul. 15, 360–367 (2010)

    Article  MATH  Google Scholar 

  23. Prandtl, L.: Uber Flussig keits bewegung bei sehr kleiner Reibung, pp. 484–491. Verh. III. Intern. Math Kongr., Heidelberg (1904)

  24. Schlichting, H., Gersten, K.: Boundary Layer Theory, Monograph. Springer, Germany (2000)

    Book  Google Scholar 

  25. Van Dyke, M.: An Album of Fluid Motion. Parabolic Press, Stanford (1982)

    Google Scholar 

  26. Van Gorder, R.A., Vajravelu, K.: Existence and uniqueness results for a nonlinear differential equation arising in MHD Falkner-Skan flow. Commun. nonlinear Sci. Numer. Simul. 15, 2272–2277 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. White, F.M.: Viscous Fluid Flow, 2nd edn. pp. 242–249. McGraw-Hill, NewYork (1991)

    Google Scholar 

  28. Zhang, J., Chen, B.: An iterative method for solving the Falkner-Skan equation. Appl. Math. Comput. 210(1), 215–222 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Malek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naseri, R., Malek, A. Optimization technique in solving laminar boundary layer problems with temperature dependent viscosity. Numer Algor 66, 663–678 (2014). https://doi.org/10.1007/s11075-013-9753-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9753-4

Keywords

Navigation