Skip to main content
Log in

Improving the compression rate versus L 1 error ratio in cell-average error control algorithms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Multiresolution representations of data are powerful tools in data compression. A common framework for applications is the cell-average setting. For a proper adaptation to singularities, it is interesting to develop nonlinear methods. Thus, one needs to control the stability of these representations. We introduce a generalization, depending on a parameter λ, of the classical cell-average error-control algorithms and we study the choice of the parameter to get the best relation quality vs. ratio of compression. It turns out that λ can be chosen nonlinearly and that for the L 1 norm we can get a significant improvement over the classical error-control algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S.: Non separable multiresolution with error control. Appl. Math. Comput. 145, 117–132 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amat, S., Aràndiga, F., Cohen, A., Donat, R., García, G., von Oehsen, M.: Data compresion with ENO schemes. Appl. Comput. Harmon. Anal. 11, 273–288 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amat, S., Aràndiga, F., Cohen, A., Donat, R.: Tensor product multiresolution analysis with error control. Signal Process. 82(4), 587–608 (2002)

    Article  MATH  Google Scholar 

  4. Amat, S., Donat, R., Liandrat, J., Trillo, J.C.: Analysis of a new nonlinear subdivision scheme. Applications in image processing. Found Comput Math 6(2), 193–226 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aràndiga, F., Cohen, A., Donat, R., Dyn, N., Matei, B.: Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Appl. Comput. Harmon. Anal. 24(2), 225250 (2008)

    Article  Google Scholar 

  6. Aràndiga, F., Donat, R.: Nonlinear multi-scale decompositions: the approach of A. Harten. Numer. Algorithm. 23, 175–216 (2000)

    Article  MATH  Google Scholar 

  7. Aràndiga, F., Donat, R.: Stability through syncronization in nonlinear multiscale transformations. SIAM J. Sci. Comput. 29(1), 265–289 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Candès, E.J., Donoho, D.L.: Curvelets and curvilinear integrals. J. Approx. Theor. 113(1), 5990 (2001)

    Google Scholar 

  9. Claypole, R.L., Davis, G., Sweldens, W., Baraniuk, R.: Nonlinear wavelet transforms for image coding via lifting scheme. IEEE Trans. Image Process. 12, 1449–1459 (2003)

    Article  MathSciNet  Google Scholar 

  10. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pur. Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation scheme. Constr. Approx. 5, 49–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Donoho, D.L.: Wedgelets: nearly minimax estimation of edges. Ann. Stat. 27(3), 859897 (1999)

    Article  MathSciNet  Google Scholar 

  13. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83, 148–184 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harten, A.: Discrete multiresolution analysis and generalized wavelets. J. Appl. Numer. Math. 12, 153–192 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harten, A.: Multiresolution representation of data: a general framework. SIAM J. Numer. Anal. 33-3, 1205–1256 (1996)

    Article  MathSciNet  Google Scholar 

  16. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Le Pennec, E., Mallat, S.: Bandelet image approximation and compression. Multiscale Model. Simul. 4(3), 992–1039 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mallat, S., Peyré, G.: Orthogonal bandelet bases for geometric images approximation. Commun. Pur. Appl. Math. 61(9), 1173–1212 (2008)

    Article  MATH  Google Scholar 

  20. Mallat, S.: Geometrical grouplets. Appl. Comput. Harmon. Anal. 26(2), 161–180 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shu, C.W.: Numerical experiments on the accuracy of ENO and modified ENO schemes. J. Sci. Comput. 5, 127–149 (1990)

    Article  MATH  Google Scholar 

  22. Sweldens, W.: The lifting scheme: a custum-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sweldens, W., Schroder, P.: Building your own wavelets at home. In: Wavelets in Computers Graphics, pp. 15–87. ACM SIGGRAPH Course notes (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos Trillo.

Additional information

Research supported in part by the project MTM2010-17508 and by the Seneca project 08662/PI/08.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amat, S., Ruiz, J. & Trillo, J.C. Improving the compression rate versus L 1 error ratio in cell-average error control algorithms. Numer Algor 67, 145–162 (2014). https://doi.org/10.1007/s11075-013-9780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9780-1

Keywords

Mathematics Subject Classifications (2010)

Navigation