Skip to main content
Log in

A heuristic verification of the degree of the approximate GCD of two univariate polynomials

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider the problem of computing verified real interval perturbations of the coefficients of two univariate polynomials such that there exist corresponding perturbed polynomials which have an exact greatest common divisor (GCD) of a given degree k. Based on the certification of the rank deficiency of a submatrix of the Bezout matrix of two univariate polynomials, we propose an algorithm to compute verified real perturbations. Numerical experiments show the performance of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnett, S.: Greatest common divisor of two polynomials. Linear Algebra Appl. 3, 7–9 (1970)

    Article  Google Scholar 

  2. Barnett, S.: Greatest common divisor of several polynomials. Proc. Camb. Philos. Soc. 70, 263–268 (1971)

    Article  MATH  Google Scholar 

  3. Barnett, S.: A note on the Bezoutian matrix. SIAM J. Appl. Math. 22, 84–86 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckermann, B., Labahn, G.: When are two polynomials relatively prime. J. Symb. Comput. 26, 677–689 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bini, D., Gemignani, L.: Fast parallel computation of the polynomial remainder sequence via Bezout and Hankel matrices. SIAM J. Comput. 22(3), 63–77 (1993)

    Article  MathSciNet  Google Scholar 

  6. Bini, D., Pan, V.Y.: Polynomial and Matrix Computations, vol. 1 of Fundamental Algorithm. Birkhüser, Boston (1994)

    Book  Google Scholar 

  7. Bini, D.A., Boito, P.: Structured matrix-based methods for polynomial \(\varepsilon \)-gcd: analysis and comparisons. In: Brown, C.W. (ed.) International Symposium Symbolic Algebraic Computation, pp. 9–16. ACM Press, New York (2007)

  8. Chen, X., Womersley, R.S.: Existence of solutions to systems of underdetermined equations and spherical designs. SIAM J. Numer. Anal. 24(6), 2326–2341 (2006)

    Article  MathSciNet  Google Scholar 

  9. Chéze, G., Galligo, A., Mourrain, B., Yakoubsohna, J.: A subdivision method for computing nearest gcd with certification. Theor. Comput. Sci. 412, 4493–4503 (2011)

    Article  MATH  Google Scholar 

  10. Corless, R.M., Gianni, P.M., Trager, B.M., Watt, S.M.: The singular value decomposition for polynomial systems. In: Levelt, A.H.M. (ed.) International Symposium Symbolic Algebraic Computation, pp. 195–207. ACM Press, New York (1995)

  11. Corless, R., Watt, S., Zhi, L.: QR factoring to compute the GCD of univariate approximate polynomials. IEEE Trans. Signal Process. 52, 3394–3402 (2004)

    Article  MathSciNet  Google Scholar 

  12. Diaz-Toca, G.M., Gonzalez-Vega, L.: Computing greatest common divisors and squarefree decompositions through matrix methods: the parametric and approximate cases. Linear Algebra Appl. 412, 222–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emiris, I.Z., Galligo, A., Lombardi, H.: Certified approximate univariate GCDs. J. Pure Appl. Algebra Spec. Issue Algoritm. Algebra 117, 229–251 (1997)

    Article  MathSciNet  Google Scholar 

  14. Gemignani, L.: Gcd of polynomials and bezout matrices. J. Inf. Comput. Sci. 3(3), 453–461 (2006)

    Google Scholar 

  15. Golub, G.H., Van Loan, Ch.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  16. Govaerts, W.: Bordered matrices and singularities of large nonlinear systems. Int. J. Bifurcation Chaos 5(1), 243–250 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Griewank, A., Reddien, G.W.: Characterisation and computation of generalised turning points. SIAM J. Numer. Anal. 21, 176–185 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Griewank, A., Reddien, G.W.: The approximation of generalized turning points by projection methods with superconvergence to the critical parameter. Numer. Math. 48, 591–606 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Griewank, A., Reddien, G.W.: The approximate solution of defining equations for generalized turning points. SIAM J. Numer. Anal. 33, 1912–1920 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM Publications, Philadelphia (2002)

    Book  MATH  Google Scholar 

  21. Hribernig, V., Stetter, H.: Detection and validation of clusters of polynomials zeros. J. Symb. Comput. 24, 667–681 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaltofen, E., Yang, Z., Zhi, L.: Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials. In: Dumas, J.G. (ed.) International Symposium Symbolic Algebraic Computation, pp. 169–176. ACM Press, New York (2006)

  23. Kaltofen, E., Yang, Z., Zhi, L.: Structured low rank approximation of a Sylvester matrix. In: Wang,D., Zhi, L. (eds.) Symbolic-Numeric Computation, pp. 69-83. Birkhäuser Verlag, Switzerland (2007)

  24. Karmarkar, N., Lakshman, Y.N.: Approximate polynomial greatest common divisors and nearest singular polynomials. In: Lakshman, Y.N. (ed.) International Symposium Symbolic Algebraic Computation, pp. 35–42. ACM Press, New York (1996)

  25. Krawczyk, R.: Newton-algorithmen zur bestimmung von nullstellen mit fehlerschranken. Computing 4, 187–201 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, B., Nie, J., Zhi, L.: Approximate gcds of polynomials and sparse sos relaxations. Theor. Comput. Sci. 409(2), 200–210 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, B., Liu, Z., Zhi, L.: A structured rank-revealing method for sylvester matrix. J. Comput. Appl. Math. 213(1), 212–223 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, B., Yang, Z., Zhi, L.: Fast low rank approximation of a Sylvester matrix by structured total least norm. Jpn. Soc. Symb. Algebraic Comput. 11, 3–4 (2005)

    MATH  Google Scholar 

  29. Li, Z., Yang, Z., Zhi, L.: Blind image deconvolution via fast approximate GCD. In: International Symposium on Symbolic Algebraic Computation, pp. 155–162. ACM Press, New York (2010)

    Google Scholar 

  30. Markovsky, I., Huffel, S.V.: An Algorithm for Approximate Common Divisor Computation. Internal Report 205–248, ESAT-SISTA. K.U.Leuven, Leuven (2005)

    Google Scholar 

  31. Miyajima, S.: Fast enclosure for solutions in underdetermined systems. J. Comput. Appl. Math. 234, 3436–3444 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miyajima, S.: Componentwise enclosure for solutions in least squares problems and underdetermined linear systems. In: SCAN Conference Novosibirsk (2012)

  33. Moore, R.E.: A test for existence of solutions to nonlinear system. SIAM J. Numer. Anal. 14(4), 611–615 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nie, J., Demmel, J., Gu, M.: Global minimization of rational functions and the nearest gcds. J. Glob. Optim. 40(4), 697–718 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Noda, M., Sasaki, T.: Approximate GCD and its application to ill-conditioned algebraic equations. J. Comput. Appl. Math. 38, 335–351 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pan, V.: Numerical computation of a polynomial GCD and extensions. Inf. Comput. 167, 71–85 (2001)

    Article  MATH  Google Scholar 

  37. Rabier, P.J., Reddien, G.W.: Characterization and computation of singular points with maximum rank deficiency. SIAM J. Numer. Anal. 23, 1040–1051 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rump, S.M.: Kleine fehlerschranken bei matrixproblemen. Ph.D. thesis. Universit Karlsruhe (1980)

  39. Rump, S.M.: Solving algebraic problems with high accuracy. In: Kulisch, W.L., Miranker, W.L. (eds.) A New Approach to Scientific Computation, pp. 51–120. Academic, New York (1983)

  40. Rump, S.M.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rump, S.M.: Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse. BIT Numer. Math. 51(2), 367–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rump, S.M.: Verified bounds for least squares problems and underdetermined linear systems. SIAM J. Matrix Anal. Appl. 33(1), 130–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rump, S.M.: Improved componentwise verified error bounds for least squares problems and underdetermined linear systems. Numer. Algorithm. (2013). doi:10.1007/s11075-013-9735-6

  44. Schönhage, A.: Quasi-gcd computations. J. Complex. 1(1), 118–137 (1985)

    Article  MATH  Google Scholar 

  45. Spence, A., Poulton, C.: Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204, 65–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sun, D., Zhi, L.: Structured low rank approximation of a bezout matrix. MM Res. Prepr. 25, 207–218 (2006)

    Google Scholar 

  47. Sun, D., Zhi, L.: Structured low rank approximation of a bezout matrix. Math. Comput. Sci. 1, 427–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Terui, A.: An iterative method for calculating approximate GCD of univariate polynomials. In: May (ed.) International Symposium on Symbolic Algebraic Computation, pp. 351–358. ACM Press, New York (2009)

  49. Zeng, Z., Dayton, B.H.: The approximate gcd of inexact polynomials. In: International Symposium on Symbolic and Algebraic Computation, pp. 320–327. ACM Press, New York (2004)

    Google Scholar 

  50. Zarowski, C.J., Ma, X., Fairman, F.W.: A QR-factorization method for computing the greatest common divisor of polynomials with real-valued coefficients. IEEE Trans. Signal Process. 48, 3042–3051 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhi, L.: Displacement structure in computing approximate GCD of univariate polynomials. In: Li, Z., Sit, W. (eds.) Sixth Asian Symposium on Computer Mathematics (ASCM 2003), vol. 10 of Lecture Notes Series on Computing, pp. 288-298. World Scientific, Singapore (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Liu, Q. A heuristic verification of the degree of the approximate GCD of two univariate polynomials. Numer Algor 67, 319–334 (2014). https://doi.org/10.1007/s11075-013-9793-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9793-9

Keywords

Mathematics Subject Classifications (2010)

Navigation