Skip to main content
Log in

A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper investigates a numerical method for solving two-dimensional nonlinear Fredholm integral equations of the second kind on non-rectangular domains. The scheme utilizes the shape functions of the moving least squares (MLS) approximation constructed on scattered points as a basis in the discrete collocation method. The MLS methodology is an effective technique for approximating unknown functions which involves a locally weighted least square polynomial fitting. The proposed method is meshless, since it does not need any background mesh or cell structures and so it is independent of the geometry of the domain. The scheme reduces the solution of two-dimensional nonlinear integral equations to the solution of nonlinear systems of algebraic equations. The error analysis of the proposed method is provided. The efficiency and accuracy of the new technique are illustrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdou, M.A., Badr, A.A., Soliman, M.B.: On a method for solving a two-dimensional nonlinear integral equation of the second kind. J. Comput. Appl. Math. 235, 3589–3598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alipanah, A., Esmaeili, S.: Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function. J. Comput. Appl. Math. 235, 5342–5347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Armentano, M.G.: Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal. 39, 38–51 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Armentano, M.G., Duran, R.G.: Error estimates for moving least square approximations. Appl. Numer. Math. 37, 397–416 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Assari, P., Adibi, H., Dehghan, M.: A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J. Comput. Appl. Math. 239, 72–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Assari, P., Adibi, H., Dehghan, M.: A numerical method for solving linear integral equations of the second kind on the non-rectangular domains based on the meshless method. Appl. Math. Model. 37, 9269–9294 (2013)

    Google Scholar 

  7. Atkinson, K.E.: The Numerical Evaluation of Fixed Points for Completely Continuous Operators. SIAM J. Numer. Anal. 10, 799–807 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  9. Atkinson, K.E., Potra, F.A.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Atkinson, K.E., Flores, J.: The discrete collocation method for nonlinear integral equations. IMA J. Numer. Anal. 13, 195–213 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Babolian, E., Bazm, S., Lima, P.: Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions. Commun. Nonlinear Sci. Numer. Simul. 16, 1164–1175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Babuska, I., Banerjee, U., Osborn, J.: Survey of meshless and generalized finite element methods: a unied approach. Acta Numer. 12, 1–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bazm, S., Babolian, E.: Numerical solution of nonlinear two-dimensional Fredholm integral equations of the second kind using Gauss product quadrature rules. Commun. Nonlinear Sci. Numer. Simul. 17, 1215–1223 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Boersma, J., Danicki, E.: On the solution of an integral equation arising in potential problems for circular and elliptic disks. SIAM J. Appl. Math. 53, 931–941 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bremer, J., Rokhlin, V., Sammis, I.: Universal quadratures for boundary integral equations on two-dimensional domains with corners. J. Comput. Phys. 229, 8259–8280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  18. Carutasu, V.: Numerical solution of two-dimensional nonlinear Fredholm integral equations of the second kind by spline functions. Gen. Math. 9, 31–48 (2001)

    MathSciNet  Google Scholar 

  19. Dehghan, M., Mirzaei, D.: Numerical solution to the unsteady two-dimensional Schrodinger equation using meshless local boundary integral equation method. Int. J. Numer. Methods Eng. 76, 501–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dehghan, M., Salehi, R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236, 2367–2377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dobner, H.J.: Bounds for the solution of hyperbolic problems. Computing 38, 209–218 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fang, W., Wang, Y., Xu, Y.: An implementation of fast wavelet Galerkin methods for integral equations of the second kind. J. Sci. Comput. 20, 277–302 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fasshauer, G.E.: Meshfree methods. In: Rieth, M., Schommers, W. (eds.) Handbook of Theoretical and Computational Nanotechnology, vol. 27, pp. 33-97. American Scientific Publishers (2006)

  24. Farengo, R., Lee, Y.C., Guzdar, P.N.: An electromagnetic integral equation: application to microtearing modes. Phys. Fluids 26, 3515–3523 (1983)

    Article  MATH  Google Scholar 

  25. Graham, I.G.: Collocation methods for two dimensional weakly singular integral equations. Aust. Math. Soc. Ser. B 22, 456–473 (1981)

    Article  MATH  Google Scholar 

  26. Han, G., Wang, J.: Extrapolation method of iterated collocation solution for two-dimensional non-linear Volterra integral equation. Appl. Math. Comput. 112, 49–61 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Han, G., Wang, J.: Extrapolation of Nystrom solution for two dimensional nonlinear Fredholm integral equations. J. Comput. Appl. Math. 134, 259–268 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Han, G., Wang, J.: Richardson extrapolation of iterated discrete Galerkin solution for two-dimensional Fredholm integral equations. J. Comput. Appl. Math. 139, 49–63 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hanson, R.L., Phillips, J.L.: Numerical solution of two-dimensional integral equations using linear elements source. SIAM J. Numer. Anal. 15, 113–121 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hansen, P.C., Jensen, T.K.: Large-scale methods in image deblurring. Lect. Notes. Comput. Sci. 4699, 24–35 (2007)

    Article  Google Scholar 

  31. Kaneko, H., Xu, Y.: Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math. Comput. 62, 739–753 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kress, B.: Linear Integral Equations. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  33. Kumar, S.: A discrete collocation-type method for Hammerstein equations. SIAM J. Numer. Anal. 25, 328–341 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, X.F., Rong, E.Q.: Solution of a class of two-dimensional integral equations. J. Comput. Appl. Math. 145, 335–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lin, Q., Sloan, I.H., Xie, R.: Extrapolation of the iterated collocation method for integral equations of the second kind. SIAM J. Numer. Anal. 27, 1535–1541 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Manzhirov, A.V.: On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology. J. Appl. Math. Mech. 49, 777–782 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mirkin, M.V., Bard, A.J.: Multidimensional integral equations: a new approach to solving microelectrode diffusion problems. J. Electroad. Chem. 323, 29–51 (1992)

    Article  Google Scholar 

  39. Mirzaei, D., Dehghan, M.: A meshless based method for solution of integral equations. Appl. Numer. Math. 60, 245–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32, 983–1000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mukherjee, Y.X., Mukherjee, S.: The boundary node method for potential problems. Int. J. Numer. Methods Eng. 40, 797–815 (1997)

    Article  MATH  Google Scholar 

  42. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, Texts in Applied Mathematics, 2nd edn. Springer, New York (2007)

    Google Scholar 

  43. Radlow, J.: A two-dimensional singular integral equation of diffraction theory. Bull. Amer. Math. Soc. 70, 596–599 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  44. Rajan, D., Chaudhuri, S.: Simultaneous estimation of super-resolved scene and depth map from low resolution defocused observations. IEEE. T. Pattern. Anal. Mach. Intell. 25, 1102–1117 (2003)

    Article  Google Scholar 

  45. Salehi, R., Dehghan, M.: A moving least square reproducing polynomial meshless method. Appl. Numer. Math. 69, 34–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Salehi, R., Dehghan, M.: A generalized moving least square reproducing kernel method. J. Comput. Appl. Math. 249, 120–132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shepard, D.: A two-dimensional interpolation function for irregularly spaced points. In: Proceedings 23rd National Conference ACM, pp. 517–524. ACM Press, New York (1968)

    Google Scholar 

  48. Sladek, J., Sladek, V., Atluri, S.N.: Local boundary integral equation (LBIE) method for solving problem of elasticity with nonhomogeneous material properties. Comput. Mech. 24, 456–462 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tari, A., Rahimi, M.Y., Shahmorad, S., Talati, F.: Solving a class of two-dimensional linear and nonlinear Volterra integral equations by the differential transform method. J. Comput. Appl. Math. 228, 70–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Weiss, R.: On the approximation of fixed points of nonlinear compact operators. SIAM J. Numer. Anal 11, 550–553 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wazwaz, A.M.: Linear and Nonlinear Integral Equations: Methods and Applications. Publisher: Higher Education Press and Springer Verlag (2011)

  52. Wendland, H.: Scattered Data Approximation. Cambridge University Press (2005)

  53. Wendland, H.: Local polynomial reproduction, and moving least squares approximation. IMA J. Numer. Anal. 21, 285–300 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zuppa, C.: Error estimates for moving least square approximations. Bull. Braz. Math. Soc, New Series 34, 231–249 (2001)

    Article  MathSciNet  Google Scholar 

  55. Zuppa, C.: Good quality point sets error estimates for moving least square approximations. Appl. Numer. Math. 47, 575–585 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assari, P., Adibi, H. & Dehghan, M. A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains. Numer Algor 67, 423–455 (2014). https://doi.org/10.1007/s11075-013-9800-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9800-1

Keywords

Mathematics Subject Classifications (2010)

Navigation