Skip to main content
Log in

Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Explicit trigonometrically fitted two-derivative Runge-Kutta (TFTDRK) methods solving second-order differential equations with oscillatory solutions are constructed. When the second derivative is available, TDRK methods can attain one algebraic order higher than Runge-Kutta methods of the same number of stages. TFTDRK methods have the favorable feature that they integrate exactly first-order systems whose solutions are linear combinations of functions from the set \(\{\exp ({\rm i}\omega x),\exp (-{\rm i}\omega x)\}\) or equivalently the set \(\{\cos (\omega x),\sin (\omega x)\}\) with \(\omega >0\) the principal frequency of the problem. Four practical TFTDRK methods are constructed. Numerical stability and phase properties of the new methods are examined. Numerical results are reported to show the robustness and competence of the new methods compared with some highly efficient methods in the recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simos, T.E.: A family of fifth algebraic order trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrödinger equation. Comput. Mater. Sci. 34, 342–354 (2005)

    Article  Google Scholar 

  2. Simos, T.E., Aguiar, J.V.: A modified phase-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30, 121–131 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Franco, J.M.: Runge-Kutta methods adapted to the numerical integration of oscillatory problems. Numer. Math. Appl. 50, 427–443 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Van de Vyver, H.: An embedded exponentially fitted Runge-Kutta-Nyström method for the numerical solution of orbital problems. New Astron. 11, 577–587 (2006)

    Article  Google Scholar 

  5. Gautschi, W.: Numerical integration of ordinary differential equation based on trigonometric polynomials. Numer. Math. 3, 3811–397 (1961)

    Article  MathSciNet  Google Scholar 

  6. Lyche, T.: Chebyshevian multistep methods for ordinary differential equations. Numer. Math. 19, 65–75 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted explicit Runge-Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially fitted Runge-Kutta methods. Comput. Phys. Comm. 123, 7–15 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Franco, J.M.: Exponentially fitted explicit Runge-Kutta-Nyström methods. J. Comput. Appl. Math. 167, 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, R.P.K., Tasi, A.Y.J.: On explicit two-derivative Runge-Kutta methods. Numer. Algor. 53, 171–194 (2010)

    Article  MATH  Google Scholar 

  11. Hairer, E., Nørsett, S.P., Wanner, S.P.: Solving Ordinary Differential Equations I, Nonstiff Problems. Springer, Berlin (1993)

    MATH  Google Scholar 

  12. Lambert, J.D., Watson, I.A.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Coleman, J.P., Ixaru, L.Gr.: P-stability and exponential-fitting methods for \(y^{\prime \prime }=f(x,y)\) IMA. J. Numer. Anal. 16, 179–199 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Van de Vyver, H.: Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems. Comput. Phys. Comm. 173, 115–130 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Van der Houwen, P.J., Sommeijer, B.P.: Explicit Runge-Kutta(-Nyström) methods with reduced phase errors for computing oscillating solution. SIAM J. Numer. Anal. 24, 595–617 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Franco, J.M., Palacios, M.: High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Franco, J.M.: A class of explicit two-step hybrid methods for second-order IVPs. J. Comput. Appl. Math. 187, 41–57 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Galgani, L., Giorgilli, A., Martinoli, A., Vanzini, S.: On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: Analytical and numerical estimates. Physica. D 59, 334–348 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong You.

Additional information

On the occasion of the 80th birthday of Professor John Butcher

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, Y., You, X. & Ming, Q. Trigonometrically fitted two-derivative Runge-Kutta methods for solving oscillatory differential equations. Numer Algor 65, 651–667 (2014). https://doi.org/10.1007/s11075-013-9802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9802-z

Keywords

Navigation