Abstract
In this paper, we consider the numerical approximation for the fractional diffusion-wave equation. The main purpose of this paper is to solve and analyze this problem by introducing an implicit fully discrete local discontinuous Galerkin method. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully we prove that our scheme is unconditionally stable and get L 2 error estimates of \(O(h^{k+1}+(\Delta t)^{2}+(\Delta t)^{\frac {\alpha }{2}}h^{k+1})\). Finally numerical examples are performed to illustrate the efficiency and the accuracy of the method.
Similar content being viewed by others
References
Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 83, 265–274 (2003)
Ates, I., Yildirim, A.: Applications of variational iteration and homotopy perturbation methods to obtain exact solutions for time-fractional diffusion-wave equations. Internat. J. Numer. Methods Heat Fluid Flow 20, 638–654 (2010)
Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)
Chen, C., Lui, F., Burrage, K.: Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)
Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)
Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)
Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model 34, 2998–3007 (2010)
Fix, G., Roop, J.: Least squares finite element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)
Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)
Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection dispersion equation. J. Comput. Appl. Math. 13, 233–245 (2003)
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)
Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)
Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)
Momani, S.: An explicit numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70, 110–118 (2005)
Momani, S., Odibat, Z., Erturk, V.S.: Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Lett. A 370, 379–387 (2007)
Metzler, R., Glöckle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. Physica A 211, 13–24 (1994)
Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Status Solidi (B): Basic Res. 123(2), 739–745 (1984)
Nigmatullin, R.R.: Realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi (B): Basic Res. 133(1), 425–430 (1986)
Odibat, Z., Momani, S.: The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58, 2199–2208 (2009)
Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)
Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
Tenreiro Machado, J.A.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27, 107–122 (1997)
Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)
Zhang, X., Liu, J., Wen, J., Tang, B., He, Y.: Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods. Numer. Algorithms. 63, 143–164 (2013)
Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1986)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the NSF of Xinjiang Uigur Autonomous Region(No. 2013211B12).
Rights and permissions
About this article
Cite this article
Dai, H., Wei, L. & Zhang, X. Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation. Numer Algor 67, 845–862 (2014). https://doi.org/10.1007/s11075-014-9827-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-014-9827-y