Skip to main content
Log in

Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider the numerical approximation for the fractional diffusion-wave equation. The main purpose of this paper is to solve and analyze this problem by introducing an implicit fully discrete local discontinuous Galerkin method. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. By choosing the numerical fluxes carefully we prove that our scheme is unconditionally stable and get L 2 error estimates of \(O(h^{k+1}+(\Delta t)^{2}+(\Delta t)^{\frac {\alpha }{2}}h^{k+1})\). Finally numerical examples are performed to illustrate the efficiency and the accuracy of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, O.P.: Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 83, 265–274 (2003)

    Article  MATH  Google Scholar 

  2. Ates, I., Yildirim, A.: Applications of variational iteration and homotopy perturbation methods to obtain exact solutions for time-fractional diffusion-wave equations. Internat. J. Numer. Methods Heat Fluid Flow 20, 638–654 (2010)

    MATH  MathSciNet  Google Scholar 

  3. Baleanu, D., Defterli, O., Agrawal, O.P.: A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 15(4), 583–597 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, C., Lui, F., Burrage, K.: Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cockburn, B., Kanschat, G., Perugia, I., Schotzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  9. Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model 34, 2998–3007 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fix, G., Roop, J.: Least squares finite element solution of a fractional order two-point boundary value problem. Comput. Math. Appl. 48, 1017–1033 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jiang, Y., Ma, J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235, 3285–3290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liu, F., Anh, V., Turner, I., Zhuang, P.: Time fractional advection dispersion equation. J. Comput. Appl. Math. 13, 233–245 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Murio, D.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Momani, S.: An explicit numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70, 110–118 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Momani, S., Odibat, Z., Erturk, V.S.: Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Lett. A 370, 379–387 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Metzler, R., Glöckle, W.G., Nonnenmacher, T.F.: Fractional model equation for anomalous diffusion. Physica A 211, 13–24 (1994)

    Article  Google Scholar 

  20. Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Status Solidi (B): Basic Res. 123(2), 739–745 (1984)

    Article  Google Scholar 

  21. Nigmatullin, R.R.: Realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi (B): Basic Res. 133(1), 425–430 (1986)

    Article  MathSciNet  Google Scholar 

  22. Odibat, Z., Momani, S.: The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics. Comput. Math. Appl. 58, 2199–2208 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tenreiro Machado, J.A.: Analysis and design of fractional-order digital control systems. Syst. Anal. Model. Simul. 27, 107–122 (1997)

    MATH  Google Scholar 

  26. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, X., Liu, J., Wen, J., Tang, B., He, Y.: Analysis for one-dimensional time-fractional Tricomi-type equations by LDG methods. Numer. Algorithms. 63, 143–164 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Wei.

Additional information

This work is supported by the NSF of Xinjiang Uigur Autonomous Region(No. 2013211B12).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, H., Wei, L. & Zhang, X. Numerical algorithm based on an implicit fully discrete local discontinuous Galerkin method for the fractional diffusion-wave equation. Numer Algor 67, 845–862 (2014). https://doi.org/10.1007/s11075-014-9827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9827-y

Keywords

Navigation