Skip to main content
Log in

Discrete weighted cubic splines

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper presents methods for shape preserving spline interpolation. These methods are based on discrete weighted cubic splines. The analysis results in two algorithms with automatic selection of the shape control parameters: one to preserve the data monotonicity and other to retain the data convexity. Discrete weighted cubic B-splines and control point approximation are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach. 17, 589–602 (1970)

    Article  MATH  Google Scholar 

  2. Bos, L., Salkauskas, K.: Weighted Splines Based on Piecewise Polynomial Weight Function. In: Hagen, H., (ed.) Curve and Surface Design, pp. 87–98. SIAM (1992)

  3. Bos, L., Salkauskas, K.: Limits of weighted splines based on piecewise constant weight functions, Rocky Mountain. J. Math. 23, 483–493 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Bosner, T.: Knot insertion algorithms for weighted splines. In: Drmač, Z., Marušić, M., Tutek, Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 151–160. Springer (2005)

  5. Cinquin, Ph.: Splines unidimensionnelles sous tension et bidimensionnelles paramétrées: deux applications médicales, Thése, Université de Saint-Etienne, 28 Octobre (1981)

  6. Costantini, P.: On monotone and convex spline interpolation. Math. Comp. 46, 203–214 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Costantini, P., Kvasov, B.I., Manni, C.: On discrete hyperbolic tension splines. Adv. Comput. Math. 11, 331–354 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic Press, San Diego (2002)

    Google Scholar 

  9. Foley, T.A.: Local control of interval tension using weighted splines. Comput. Aided Geom. Des. 3, 281–294 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Foley, T.A.: Interpolation with interval and point tension control using cubic weighted v-splines. ACM TOMS 13, 68–96 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Foley, T.A.: Weighted bicubic spline interpolation to rapidly varying data. ACM Trans. Graph. 6, 1–18 (1987)

    Article  MATH  Google Scholar 

  12. Foley, T.A.: A shape preserving interpolant with tension controls. Comput. Aided Geom. Design 5, 105–118 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goodman, T.N.T.: Shape preserving interpolation by curves. In: Levesley, J., Anderson, I., Mason, J. (eds.) Algorithms for Approximation, vol IV, pp. 24–35. University of Huddersfield, Huddersfield, UK (2002)

  14. Xuli H.: Convexity-preserving piecewise rational quartic interpolation. SIAM J. Numer. Anal. 46(2), 920–929 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kim, T., Kvasov, B.I.: A shape-preserving approximation by weighted cubic splines. J. Comput. Appl. Math. 236, 4383–4397 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kulkarni, R.P., Laurent, P.-J.: Q-splines. Numer. Algoritm. 1, 45–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  18. Kvasov, B.I.: Approximation by discrete GB-splines. Numer. Algoritm. 27, 169–188 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kvasov, B.I.: DMBVP for tension splines. In: Drmač, Z., Marušić, M., Tutek, Z. (eds.) Proceedings of the Conference on Applied Mathematics and Scientific Computing, pp. 67–94. Springer (2005)

  20. Kvasov, B.I.: Hyperbolic spline interpolation algorithms. Comput. Math. Math. Phys. 51, 722–740 (2011)

    Article  MathSciNet  Google Scholar 

  21. Kvasov, B.I.: Parallel mesh methods for tension splines. J. Comput. Appl. Math. 236, 843–859 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lyche, T.: Discrete cubic spline interpolation. BIT 16, 281–290 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Miroshnichenko, V.L.: Isogeometric properties and approximation error bounds of weighted cubic splines, Computational Systems: Splines and their applications. Institute of Mathematics, Siberian Branch, Russian Academy of Sciences. Novosibirsk 154, 127–154 (1995). [in Russian]

    MathSciNet  Google Scholar 

  24. Peña, J.M. (ed.) Shape Preserving Representations in Computer-Aided Geometric Design. Nova Science Publishers Inc., New York (1999)

  25. Rogina, M., Bosner, T.: On calculating with lower order Chebyshev splines. In: Laurent, P.-J., Sablonnière, P., Schumaker, L.L. (eds.) Curves and Surfaces Design: Saint-Malo 1999, pp. 343–352. Vanderbilt University Press, Nashville (2000)

  26. Salkauskas, K.: C 1 splines for interpolation of rapidly varying data, Rocky Mountain. J. Math. 14, 239–250 (1984)

    MATH  MathSciNet  Google Scholar 

  27. Salkauskas, K., Bos, L.: Weighted splines as optimal interpolants, Rocky Mountain. J. Math. 22, 705–717 (1992)

    MATH  MathSciNet  Google Scholar 

  28. Schmidt, J.W., Hess, W.: Schwach verkoppelte Ungleichungssysteme und konvexe Spline-Interpolation. Elem. Math. 39, 85–96 (1984)

    MATH  MathSciNet  Google Scholar 

  29. Schumaker, L.L.: Spline functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  30. Zavyalov, Yu.S., Kvasov, B.I., Miroshnichenko, V.L.: Methods of Spline Functions. Moscow, Nauka (1980). [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris I. Kvasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvasov, B.I. Discrete weighted cubic splines. Numer Algor 67, 863–888 (2014). https://doi.org/10.1007/s11075-014-9830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9830-3

Keywords

Mathematics Subject Classifications (2010)

Navigation