Skip to main content

Numerical solution of stochastic fractional differential equations

  • ORIGINAL PAPER
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Nowadays, fractional calculus is used to model various different phenomena in nature. The aim of this paper is to investigate the numerical solution of stochastic fractional differential equations (SFDEs) driven by additive noise. By applying Galerkin method that is based on orthogonal polynomials which here we have used Jacobi polynomials, we prove the convergence of the method. Numerical examples confirm the efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, E.J., Novosel, S.J., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations. Stochast. Stochast. Rep. 64(1–2), 117–142 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atanackovic, T.M., Stankovic, B.: On a system of differential equations with fractional derivatives arising in rod theory. J. Phys. A 37(4), 1241–1250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Badr, A.A., El-Hoety, H.S.: Monte-Carlo Galerkin Approximation of Fractional Stochastic Integro-Differential Equation, Hindawi publishing coporation, mathematical problems in engineering, doi:10.1155/2012/709106

  4. Blömker, D., Jentzen, A.: Galerkin approximations for the stochastic burgers equation. SIAM J. Numer. Anal. 51-1, 694–715 (2013)

    Article  Google Scholar 

  5. Blömker, D., Kamrani, M., Hosseini, S.M.: Full discretization of Stochastic Burgers Equation with correlated noise. IMA J. Numer. Anal. 33(3), 825–848 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 229–248 (2002)

  7. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 3–22 (2002)

  8. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithm. 31–52 (2004)

  9. Doha, E.H., Bahrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36(10), 4931–4943 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Enelund, M., Josefson, B.L.: Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations. AIAA J. 35(10), 1630–1637 (1997)

    Article  MATH  Google Scholar 

  11. Erturka, E.V., Momanib, S.: On the generalized differential transform method: application to fractional integro-differential equations. Stud. Nonlinear Sci. 118–126 (2010)

  12. Friedrich, C.: Linear viscoelastic behavior of branched polybutadiens: a fractional calculus approach. Acta Polym. 385–390 (1995)

  13. Govindan, T.E., Joshi, M.C.: Stability and optimal control of stochastic functional-differential equations with memory. Numer. Funct. Anal. Optim. 13(3–4), 249–265 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11, 1–37 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 14, 674–684 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. He, J.H.: Variation iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34, 699–708 (1999)

    Article  MATH  Google Scholar 

  17. Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by VIM. J. Math. Anal. Appl. 345, 476–484 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jentzen, A.: Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31, 375–404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jentzen, A., Kloeden, P., Winkel, G.: Efficient simulation of nonlinear parabolic spdes with additive noise. Ann. Appl. Probab. 21(3), 908–950 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Khader, M.M.: Introducing an efficient modification of the variational iteration method by using Chebyshev polynomials. Appl. Appl. Math: Int. J. 7(1), 283–299 (2012)

    MATH  MathSciNet  Google Scholar 

  21. Khader, M.M., El Danaf, T.S., Hendy, A.S.: A computational matrix method for solving systems of high order fractional differential equations. Appl. Math. Model. 4035–4050 (2013)

  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  23. Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34, 593–600 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oksendal, B.: Stochastic Differential Equations, An Introduction with Applications, Springer; 6th edn.

  25. Pedas, A., Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 235, 3502–3514 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sweilam, N.H., Khader, M.M., Mahdy, A.MS.: Crank-Nicolson finite difference method for solving time-fractional diffusion equation. J. Fract. Calc. Appl. 2(2), 1–9 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoo Kamrani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamrani, M. Numerical solution of stochastic fractional differential equations. Numer Algor 68, 81–93 (2015). https://doi.org/10.1007/s11075-014-9839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9839-7

Keywords