Skip to main content
Log in

Numerical simulation of anomalous infiltration in porous media

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Nonlinear time-fractional diffusion equations have been used to describe the liquid infiltration for both subdiffusion and superdiffusion in porous media. In this paper, some problems of anomalous infiltration with a variable-order time-fractional derivative in porous media are considered. The time-fractional Boussinesq equation is also considered. Two computationally efficient implicit numerical schemes for the diffusion and wave-diffusion equations are proposed. Numerical examples are provided to show that the numerical methods are computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM. J. Sci. Commun. 32(4), 1740–1760 (2010)

    MATH  MathSciNet  Google Scholar 

  2. Chen, J., Liu, F., Anh, V., Shen, S., Liu, Q., Liao, C.: The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 219, 1737–1748 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Annalen der Physik 12(11-12), 692–703 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Diaz, G., Coimbra, C.F.M.: Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56(1-2), 145–157 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Gerasimov, D.N., Kondratieva, V.A., Sinkevich, O.A.: An anomalous non-self-similar infiltration and fractional diffusion equation. Physica D: Nonlinear Phenom. 239(16), 1593–1597 (2010)

    Article  MATH  Google Scholar 

  6. Ingman, D., Suzdalnitsky, J., Zeifman, M.: Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech. 67(2), 383–390 (2000)

    Article  MATH  Google Scholar 

  7. Ingman, D., Suzdalnitsky, J.: Control of damping oscilations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Eng. 193(52), 5585–5595 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, C., Deng, W., Wu, Y.: Numerical analysis and physical simulations for the time fractional radial diffusion equation. Comput Math. Appl. 62(3), 1024–1037 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lorenzo, C.F., Hartley, T.T.: Initialization, conceptualization, and application in the generalized (fractional) calculus. Crit. Rev. Biomed. Eng. 35(6), 447–553 (2007)

    Article  Google Scholar 

  10. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1-4), 57–98 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pedro, H.T.C., Kobayashi, M.H., Pereira, J.M.C., Coimbra, C.F.M.: Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control. 14(9-10), 1659–1672 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ramirez, L.E.S., Coimbra, C.F.M.: A variable order constitutive relation for viscoelasticity. Ann. Phys 16(7-8), 543–552 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Samko, S.G., Ross, B.: Intergation and differentiation to a variable fractional order. Integr. Transforms and Spec. Funct. 1(4), 277–300 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21(3), 213–236 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.: The variable viscoelasticity oscillator. Annalen der Physik 14(6), 378–389 (2005)

    Article  MATH  Google Scholar 

  17. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A 388, 4586–4592 (2009)

    Article  Google Scholar 

  18. Sun, H., Chen, W., Sheng, H., Chen, Y.: On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A 374(7), 906–910 (2010)

    Article  MATH  Google Scholar 

  19. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractonal advection-diffusion equation with a nonlinear source term, SIAM. J. Numer. Anal. 47(3), 1760–1781 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, S., Liu, F., Liu, Q. et al. Numerical simulation of anomalous infiltration in porous media. Numer Algor 68, 443–454 (2015). https://doi.org/10.1007/s11075-014-9853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9853-9

Keywords

Navigation