Skip to main content
Log in

Fitted finite volume positive difference scheme for a stationary model of air pollution

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A new approach is proposed for the numerical solution of boundary value one-dimensional problem of advection-diffusion equation which arises, among others, in air pollution modeling. Since the problem is posed in an unbounded interval we use a log-transformation to confine the computational region. We discuss the well-posedness of the new problem and the properties of its solution. We derive a positive finite volume difference scheme. Some results from computational experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chernogorova, T., Valkov, R.: Finite volume difference scheme for a degenerate parabolic equation in the zero-coupon bond pricing. Math. Comput. Modell. 54, 2659–2671 (2011)

    Article  MathSciNet  Google Scholar 

  2. Chernogorova, T., Vulkov, L.: Finite volume difference scheme for a transformed stationary air pollution problem. Amer. Inst. Phys. 1497, 176–183 (2012)

    Google Scholar 

  3. Dang, Q.A., Ehrhardt, M.: Adequate numerical solution of air pollution problems by positive difference schemes on unbounded domains. Math. Comp. Modell. 44, 834–856 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dang, Q.A., Ehrhardt, M.: On Dirac delta sequences and their generating functions. Appl. Math. Lett. 25(12), 2385–2390 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dang, Q.A., Ehrhardt, M., Tran, G. L., Le, D.: In: Bodine, C.G. (ed.) On the Numerical Solution of Some Problems of Enveronmental Pollution, Air Pollution Research Advances, pp. 171–200. Nova Science Publishers, Inc. (2007)

  6. Zlatev, Z., Dimov, I.: Computational and Numerical Challenges in Environmental Modeling, p. 373. Elsevier, Amsterdam (2006)

    Google Scholar 

  7. Farago, I., Korotov, S., Szabo, T.: Non-negativity preservation of the discrete nonstationary heat equation in 1D and 2D. J. Appl. Math. 3, 60–81 (2010)

    MATH  Google Scholar 

  8. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 3rd edn., pp. 523. Springer-Verlag, Berlin Heidelberg (2001)

    MATH  Google Scholar 

  9. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities, pp. 267. Kluwer Academic Publisher, Dordrecht, The Netherlands (1999)

    Book  MATH  Google Scholar 

  10. Kufner, A.: Weighted Sobolev spaces, pp. 152. Wiley, New York (1985)

    MATH  Google Scholar 

  11. Lanser, D., Verwer, J.G.: Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comp. Appl. Math. 111, 201–216 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type. Amer. Math. Soc. Transl. Monographs 23, 648 (1968)

    Google Scholar 

  13. Marchuk, G.I.: Mathematical Models in Environmental Problems, Studies in Mathematics and its Applications, vol. 16, p. 217. North Holland (1986)

  14. Matus, P.: The maximum principle and some of the applications. Comput. Methods Appl. Math. 2, 50–91 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Miller, J.J.H., Wang, S: A New non-conforming Petrov-Galerkin finite element method with triangular elements for a singularly perturbed advection-diffusion problem. IMA J. Numer. Anal. 14, 257–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Morton, K.W.: Numerical Solution of Convection-Diffusion Problems, p. 372. Chapman and Hall, London (1996)

    Google Scholar 

  17. Oleinik, O.A., Radkevich, E.V.: Second Order Equations with Nonnegative Characteristic Form, p. 259. AMS Plenum Press, New York (1973)

    Book  MATH  Google Scholar 

  18. Samarskii, A.A.: The Theory of Difference Schemes, p. 786. Marcel Dekker, New York (2001)

    Book  MATH  Google Scholar 

  19. Tornberg, A.K., Engquist, E.: Numerical approximations of PDEs with singularities. J. Comp. Phys. 19, 527–552 (2003)

    MathSciNet  Google Scholar 

  20. Valkov, R.: Finite volume method for the Black-Scholes equation transformed on finite interval. Amer. Inst. Phys. 1497, 76–83 (2012)

    Google Scholar 

  21. Wang, S.: A novel finite volume method for Black-Scholes equation governing option pricing. IMA. J. Numer. Anal. 24, 699–720 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zlatev, Z., Havasi, A., Farago, I.: Influence of climatic changes on pollution levels in Hungary and its surrounding countries. Atmosphere 2, 201–221 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Chernogorova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernogorova, T., Lubin Vulkov, L. Fitted finite volume positive difference scheme for a stationary model of air pollution. Numer Algor 70, 171–189 (2015). https://doi.org/10.1007/s11075-014-9940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9940-y

Keywords

Navigation