Skip to main content
Log in

Efficient low-error analytical-numerical approximations for radial solutions of nonlinear Laplace equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study radial solution of nonlinear elliptic partial differential equations of the form −△u=f(u) (a nonlinear Laplace equation) by means of an analytical-numerical method, namely optimal homotopy analysis. In this method, one obtain approximate analytical solutions which contain a free control parameter. This control parameter can be adjusted in order to improve the convergence or accuracy of the approximations. We outline the general technique for obtaining radial solutions of the general nonlinear elliptic partial differential equations of the form −△u=f(u), before focusing our attention on several specific equations, namely, the modified Liouville equation (with general positive nonlinearity), the Yamabe equation, and a generalized Lane-Emden equation of second kind. For the general case, we outline the method by which one may control the residual errors of these analytical-numerical approximations. One benefit to this method is that one can obtain solutions with rather low residual errors after only a few terms in the analytical expansion are calculated. This makes the method rather efficient compared to a standard homotopy approach, where many terms may need to be computed to guarantee the accuracy of the solution. By studying the modified Liouville equation (with general positive nonlinearity), the Yamabe equation, and a generalized Lane-Emden equation of second kind, we demonstrate that the benefits of the method are often related to the form of the nonlinearity inherent in the problem. For certain forms of nonlinearity, the method gives very accurate solutions after relatively few terms, while for other forms of nonlinearity this is not the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao, S.J.: On the proposed homotopy analysis techniques for nonlinear problems and its application, Ph.D. dissertation. Shanghai Jiao Tong University (1992)

  2. Liao, S.J., Perturbation, B.: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton (2003)

    Google Scholar 

  3. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Non-Linear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  4. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  6. Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14, 983–997 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Liao, S.J.: Homotopy Analysis Method in Nonlinear Differential Equations. Springer & Higher Education Press, Heidelberg (2012)

    Book  MATH  Google Scholar 

  8. Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach. Commun. Nonlinear Sci. Numer. Simul. 14, 4078–4089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2315–2332 (2010)

    MathSciNet  Google Scholar 

  10. Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A 360, 109–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Abbasbandy, S.: Homotopy analysis method for heat radiation equations. Int. commun heat mass tran. 34, 380–387 (2007)

    Article  MathSciNet  Google Scholar 

  12. Liao, S.J., Su, J., Chwang, A.T.: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body. Int. J. Heat and Mass Transfer 49, 2437–2445 (2006)

    Article  MATH  Google Scholar 

  13. Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, S.J.: An explicit, totally analytic approximation of Blasius viscous flow problems. Int. J. Non-Linear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  15. Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Akyildiz, F.T., Vajravelu, K., Mohapatra, R.N., Sweet, E., Van Gorder, R.A.: Implicit Differential Equation Arising in the Steady Flow of a Sisko Fluid. Appl. Math. Comput. 210, 189–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hang, X., Lin, Z.L., Liao, S.J., Wu, J.Z., Majdalani, J.: Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids 22, 053601 (2010)

    Article  MATH  Google Scholar 

  19. Sajid, M., Hayat, T., Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dynamics 50, 27–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Physics Letters A 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  21. Turkyilmazoglu, M.: Purely analytic solutions of the compressible boundary layer flow due to a porous rotating disk with heat transfer. Phys. Fluids 21, 106104 (2009)

    Article  MATH  Google Scholar 

  22. Abbasbandy, S., Zakaria, F.S.: Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, W., Liao, S.J.: Solving solitary waves with discontinuity by means of the homotopy analysis method, Chaos. Solitons & Fractals 26, 177–185 (2005)

    Article  MATH  Google Scholar 

  24. Sweet, E., Van Gorder, R.A.: Analytical solutions to a generalized Drinfel’d - Sokolov equation related to DSSH and KdV6. Appl. Math. Comput. 216, 2783–2791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, Y., Wang, C., Liao, S.J.: Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method, Chaos. Solitons & Fractals 23, 1733–1740 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cheng, J., Liao, S.J., Mohapatra, R.N., Vajravelu, K.: Series solutions of Nano-boundary-layer flows by means of the homotopy analysis method. J. Math. Anal. Appl. 343, 233–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Van Gorder, R.A., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Phys. Lett. A 371, 72–82 (2007)

    Article  MATH  Google Scholar 

  29. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear Sci. Numer. Simul. 14, 1121–1131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equation. Phys. Lett. A 372, 6060–6065 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liao, S.: A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142, 1–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van Gorder, R.A.: Analytical method for the construction of solutions to the Föppl - von Kármán equations governing deflections of a thin flat plate. Int. J. Non-Linear Mech. 47, 1–6 (2012)

    Article  Google Scholar 

  33. Van Gorder, R.A.: Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function H(x) in the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 17, 1233–1240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ghoreishi, M., Ismail, A.I.B., Alomari, A.K., Sami Bataineh, A.: The comparison between Homotopy Analysis Method and Optimal Homotopy Asymptotic Method for nonlinear age-structured population models. Commun. Nonlinear Sci. Numer. Simul. 17, 1163–1177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Abbasbandy, S., Shivanian, E., Vajravelu, K.: Mathematical properties of h-curve in the frame work of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 16, 4268–4275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Van Gorder, R.A.: Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numer. Algorithms 61, 613–629 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Liang, S., Jeffrey, D.J.: Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation. Commun. Nonlinear Sci. Numer. Simul. 14, 4057–4064 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sajid, M., Hayat, T.: Comparison of HAM and HPM methods in nonlinear heat conduction and convection equations. Nonlinear Anal.: Real World Appl. 9, 2296–2301 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Allan, F.M.: Derivation of the Adomian decomposition method using the homotopy analysis method. Appl. Math. Comput. 190, 6–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Miller, J., Rubel, L.A.: Functional separation of variables for Laplace equations in two dimensions. J. Phys. A 26, 1901–1913 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Larsen, A.L., Sanchez, N.: sinh-Gordon, cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes. Phys. Rev. D 54, 2801–2807 (1996)

    Article  MathSciNet  Google Scholar 

  42. Kharibegashvili, S.S., Dzhokhadze, O.M.: Cauchy problem for a generalized nonlinear liouville equation. Differential Equations 47, 1763–1775 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lev, B.I.: Nonequilibirum self-gravitating system. Int. J. Mod. Phys. B 25, 2237 (2011)

    Article  Google Scholar 

  44. Russo, M., Van Gorder, R.A.: Control of error in the homotopy analysis of nonlinear Klein-Gordon initial value problems. Appl. Math. Comput. 219, 6494–6509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Alice Chang, S.Y., Han, Z.C., Yang, P.: Classification of singular radial solutions to the [sigma] k Yamabe equation on annular domains. J. Differential Equations 216, 482–501 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Andersson, L., Chrusciel, P.T., Friedrich, H.: On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations. Commun. Math. Phys. 149, 587–612 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Brendle, S.: Blow-up phenomena for the Yamabe equation. J. American Math. Soc. 21, 951–980 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Van Gorder, R.A.: An elegant perturbation solution for the Lane-Emden equation of the second kind. New Astron. 16, 65–67 (2011)

    Article  MathSciNet  Google Scholar 

  49. Van Gorder, R.A.: Analytical solutions to a quasilinear differential equation related to the Lane-Emden equation of the second kind. Celest. Mech. Dyn. Astron. 109, 137–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haussermann, J., Van Gorder, R.A. Efficient low-error analytical-numerical approximations for radial solutions of nonlinear Laplace equations. Numer Algor 70, 227–248 (2015). https://doi.org/10.1007/s11075-014-9944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-014-9944-7

Keywords

Navigation