Skip to main content
Log in

On choosing the location of the sources in the MFS

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The satisfactory location for the sources outside the closure of the domain of the problem under consideration remains one of the major issues in the application of the method of fundamental solutions (MFS). In this work we investigate this issue by means of two algorithms, one based on the satisfaction of the boundary conditions and one based on the leave-one-out cross validation algorithm. By applying these algorithms to several numerical examples for the Laplace and biharmonic equations in a variety of geometries in two and three dimensions, we obtain locations of the sources which lead to highly accurate results, at a relatively low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem 33, 1348–1361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys 227, 7003–7026 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, W., Wang, F.: A method of fundamental solutions without fictitious boundary. Eng. Anal. Bound. Elem 34, 530–532 (2010)

    Article  MATH  Google Scholar 

  4. Cho, H.A., Golberg, M.A., Muleshkov, A.S., Li, X.: Trefftz methods for time dependent partial differential equations. CMC Comput Mater. Continua 1, 1–38 (2004)

    Google Scholar 

  5. Cisilino, A.P., Sensale, B.: Optimal placement of the source points for singular problems in the method of fundamental solutions, Advances in Boundary Element Techniques II Denda, M., Aliabadi, A.H., Charafi, A. (eds.) . Hoggar, Geneva (2001)

  6. Cisilino, A.P., Sensale, B.: Application of a simulated annealing algorithm in the optimal placement of the source points in the method of the fundamental solutions. Comput Mech 28, 129–136 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fairweather, G., Johnston, R.L. In: Baker, C.T.H., Miller, G.F. (eds.): The method of fundamental solutions for problems in potential theory, pp. 349–359. Academic Press, London (1982)

  8. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, World Scientific Publishing Co., Inc. (2007)

  10. Fasshauer, G.E., Zhang, J.G.: On choosing optimal shape parameters for RBF approximation. Numer Algorithms 45, 345–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1997)

    MATH  Google Scholar 

  12. Golberg, M.A., Chen, C.S. In: Golberg, M.A. (ed.) : The method of fundamental solutions for potential, Helmholtz and diffusion problems, Boundary Integral Methods: Numerical and Mathematical Aspects, vol. 1, pp. 103–176. WIT Press/Comput. Mech. Publ., Boston, MA (1998)

  13. Gorzelanczyk, P., Kolodziej, J.A.: Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods. Eng. Anal. Bound. Elem. 32, 64–75 (2008)

    Article  MATH  Google Scholar 

  14. Gorzelanczyk, P.: Method of fundamental solution and generic algorithms for torsion of bars with multiply connected cross sections. J. Theor. Appl. Mech 49, 1059–1078 (2011)

    Google Scholar 

  15. Johnston, R.L., Fairweather, G.: The method of fundamental solutions for problems in potential flow. Appl. Math. Model. 8, 265–270 (1984)

    Article  MATH  Google Scholar 

  16. Karageorghis, A.: A practical algorithm for determining the optimal pseudo-boundary in the method of fundamental solutions. Adv. Appl. Math. Mech 1, 510–528 (2009)

    MathSciNet  Google Scholar 

  17. Karageorghis, A., Fairweather, G.: The method of fundamental solutions for the numerical solution of the biharmonic equation. J. Comput. Phys 69, 434–459 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karageorghis, A., Lesnic, D., Marin, L.: A survey of applications of the MFS to inverse problems. Inverse Prob. Sci. Eng. 19, 309–336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolodziej, J.A., Zielinski, A.P.: Boundary Collocation Techniques and their Application in Engineering. WIT Press, Southampton (2009)

    Google Scholar 

  20. Li, M., Chen, C.S., Karageorghis, A.: The MFS for the solution of harmonic boundary value problems with non-harmonic boundary conditions. Comput. Math. Appl. 66, 2400–2424 (2013)

    Article  MathSciNet  Google Scholar 

  21. Lin, J., Chen, W., Wang, C.S.: Numerical treatment of acoustic problems with boundary singularities by the singular boundary method. J. Sound Vib. 333, 3177–3188 (2014)

    Article  Google Scholar 

  22. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–650 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA, Matlab.

  24. Nennig, B., Perrey-Debain, E., Chazot, J.-A.: The method of fundamental solutions for acoustic wave scattering by a single and a periodic array of poroelastic scatterers. Eng. Anal. Bound. Elem 35, 1019–1028 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nishimura, R., Nishimori, K.: Arrangement of fictitious charges and contour points in charge simulation method for electrodes with 3-D asymmetrical structure by immune algorithm. J. Electrostat. 63, 74–748 (2005)

    Article  Google Scholar 

  26. Nishimura, R., Nishimori, K., Ishihara, N.: Determining the arrangement of fictitious charges in charge simulation method using genetic algorithms. J. Electrostat. 49, 95–105 (2000)

    Article  Google Scholar 

  27. Nishimura, R., Nishimori, K., Ishihara, N.: Automatic arrangement of fictitious charges and contour points in charge simulation method for polar coordinate system. J. Electrostat. 51, 618–624 (2001)

    Article  Google Scholar 

  28. Nishimura, R., Nishihara, M., Nishimori, K., Ishihara, N.: Automatic arrangement of fictitious charges and contour points in charge simulation method for two spherical electrodes. J. Electrostat. 57, 337–346 (2003)

    Article  Google Scholar 

  29. Papamichael, N., Warby, M.K., Hough, D.M.: The treatment of corner and pole-type singularities in numerical conformal mapping techniques. J. Comput. Appl. Math. 14, 163–191 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schaback, R. In: Chen, C.S., Karageorghis, A., Smyrlis, Y.S. (eds.): Adaptive numerical solution of MFS systems, The Method of Fundamental Solutions – A Meshless Method, pp. 1–27. Dynamic Publishers, Inc., Atlanta (2008)

  32. Shigeta, T., Young, D.L., Liu, C.S.: Adaptive multilayer method of fundamental solutions using a weighted greedy QR decomposition for the Laplace equation. J. Comput. Phys. 231, 7118–7132 (2012)

    Article  MathSciNet  Google Scholar 

  33. Tankelevich, R., Fairweather, G., Karageorghis, A.: Three-dimensional image reconstruction using the PF/MFS technique. Eng. Anal. Bound. Elem. 33, 1403–1410 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, C.T., Yang, F.-L., Young, D.L.: Application of the method of fundamental solutions and the generalized Lagally theorem to the interaction of solid object and external singularities in an inviscid fluid. CMC Comput. Mater. Continua. 23, 135–153 (2011)

    MATH  Google Scholar 

  35. Yang, F.L., Wu, C.T., Young, D.L.: On the calculation of two-dimensional added mass coefficients by the Taylor theorem and the method of fundamental solutions. J. Mech. 28, 107–112 (2012)

    Article  Google Scholar 

  36. http://graphics.stanford.edu/data/3Dscanrep/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Karageorghis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C.S., Karageorghis, A. & Li, Y. On choosing the location of the sources in the MFS. Numer Algor 72, 107–130 (2016). https://doi.org/10.1007/s11075-015-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0036-0

Keywords

Mathematics Subject Classification (2010)

Navigation