Skip to main content
Log in

An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study split feasibility problems and fixed point problems concerning left Bregman strongly relatively nonexpansive mappings in p-uniformly convex and uniformly smooth Banach spaces. We suggest an iterative scheme for the problem and prove strong convergence theorem of the sequences generated by our scheme under some appropriate conditions in real p-uniformly convex and uniformly smooth Banach spaces. Finally, we give numerical examples of our result to study its efficiency and implementation. Our result complements many recent and important results in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Y.I.: Metric and generalized projection operator in Banach spaces: properties and applications, in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type vol 178 of Lecture Notes in Pure and Applied Mathematics, pp 15-50. USA, Dekker, New York, NY (1996)

    Google Scholar 

  2. Bauschke, H.H., Combettes, P.L.: Convex analysis and monotone operator theory in hilbert spaces. Springer, New York (2011)

    Book  MATH  Google Scholar 

  3. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems 18(2), 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 20(1), 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numerical Algorithms 8(2-4), 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Censor, Y., Lent, A.: An iterative row-action method for interval convex programming. J. Optim. Theory Appl. 34, 321?353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Reich, S.: Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization. Optimization 37, 323–339 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cioranescu, I.: Geometry of banach spaces, duality mappings and nonlinear problems. Kluwer Academic Dordrecht (1990)

  9. Dunford, N., Schwartz, J.T.: Linear operators I. Wiley? Interscience, New York (1958)

    MATH  Google Scholar 

  10. Goebel, K., Kirk, W.A.: Topics in metric fixed point theory. In: Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, (1990)

  11. Lindenstrauss, J., Tzafriri, L.: Classical banach spaces II. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  12. Maingé, P.E.: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. 59(1), 74–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Martín-Márquez, V., Reich, S., Sabach, S.: Bregman strongly nonexpansive operators in reflexive Banach spaces. J. Math. Anal. Appl. 400, 597–614 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martín-Márquez, V., Reich, S., Sabach, S.: Right Bregman nonexpansive operators in banach spaces. Nonlinear Anal. 75, 5448–5465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 279, 372–379 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Problems 21(5), 1655–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, pp. 313-318 (1996)

  19. Reich, S.: Book Review: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Amer. Math. Soc. 26, 367–370 (1992)

    Article  MathSciNet  Google Scholar 

  20. Reich, S.: Extension problems for accretive sets in Banach spaces. J. Functional Anal. 26, 378–395 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schöpfer, F.: Iterative regularization method for the solution of the split feasibility problem in Banach spaces. PhD thesis, Saarbrücken (2007)

  22. Schöpfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Problems 24, 055008 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shehu, Y.: Strong convergence theorem for Multiple Sets Split Feasibility Problems in Banach Spaces, Under review: Numerical Functional Analysis and Optimization

  24. Shehu, Y.: A cyclic iterative method for solving Multiple Sets Split Feasibility Problems in Banach Spaces, Under review: Quaestiones Mathematicae

  25. Shehu, Y., Ogbuisi, F. U., Iyiola, O. S.: Convergence Analysis of an iterative algorithm for fixed point problems and split feasibility problems in certain Banach spaces, In press: Optimization. doi:10.1080/02331934.2015.1039533

  26. Takahashi, W.: Nonlinear Functional Analysis-Fixed Point Theory and Applications, Yokohama Publishers Inc., Yokohama. (in Japanese) (2000)

  27. Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama (2000)

  28. Wang, F.: A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces. Numer. Funct. Anal. Optim. 35, 99–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, H.K.: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(2), 1127–1138 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, H.-K.: A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem. Inverse Problems 22(6), 2021–2034 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Problems 20(4), 1261–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, Q., Zhao, J.: Generalized KM theorems and their applications. Inverse Problems 22(3), 833–844 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yao, Y., Jigang, W., Liou, Y.-C.: Regularized methods for the split feasibility problem. Abstr. Appl Anal. 2012(ID), 140679 (2012). 13

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shehu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehu, Y., Iyiola, O.S. & Enyi, C.D. An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer Algor 72, 835–864 (2016). https://doi.org/10.1007/s11075-015-0069-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0069-4

Keywords

Mathematics Subject Classification (2010)

Navigation