Skip to main content
Log in

General fractional variational problem depending on indefinite integrals

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this report, we consider two kind of general fractional variational problem depending on indefinite integrals include unconstrained problem and isoperimetric problem. These problems can have multiple dependent variables, multiorder fractional derivatives, multiorder integral derivatives and boundary conditions. For both problems, we obtain the Euler-Lagrange type necessary conditions which must be satisfied for the given functional to be extremum. Also, we apply the Rayleigh-Ritz method for solving the unconstrained general fractional variational problem depending on indefinite integrals. By this method, the given problem is reduced to the problem for solving a system of algebraic equations using shifted Legendre polynomials basis functions. An approximate solution for this problem is obtained by solving the system. We discuss the analytic convergence of this method and finally by some examples will be showing the accurately and applicability for this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferreira, N., Duarte, F., Lima, M., Marcos, M., Machado, J.T.: Application of fractional calculus in the dynamical analysis and control of mechanical manipulators. Fract. Calc. Appl. Anal. 11(1), 91–113 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Magin, R.: Fractional calculus in Bioengineering. Part 1–3. Crit. Rev. Bioeng., 32 (2004)

  3. Hilfer, R: Fractional diffusion based on Riemann-Liouville fractional derivatives. J. Phys. Chem. B 104(16), 3914–3917 (2000)

    Article  Google Scholar 

  4. Oustaloup, A., Pommier, V., Lanusse, P.: Design of a fractional control using performance contours. Application to an electromechanical system. Fract. Calc. Appl. Anal. 6(1), 1–24 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp 217–224. Springer, Heidelberg (1999)

  6. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  7. Tenreiro Machado, J.A., Barbosa, R.S.: Introduction to the special issue on fractional differentiation and its applications. J. Vib. Cont. 9-10, 1253–1254 (2008)

    MathSciNet  Google Scholar 

  8. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22(12), 1816–1820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

  10. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication. Wiley, New York (1993)

    Google Scholar 

  11. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Agrawal, O.M.P: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. Math. Theo. 40, 6287–6303 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Almeida, R., Torres, D.F.M.: Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl. 61, 3097–3104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Agrawal, O.M.P: Generalized variational problems and Euler-Lagrange equations. Comput. Math. Appl. 59, 1852–1864 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Agrawal, O.M.P: Fractional variational calculus and transversality conditions. J. Phys. Math. Gen. 39, 10375–10384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Agrawal, O.M.P: Generalized Euler-Lagrange equations and transversality conditions for FVPs in terms of the Caputo Derivative. J. Vib. Cont. 13, 1217–1237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malinowska, A.B., Torres, D.F.M.: Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative. Comput. Math. Appl. 59, 3110–3116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yousefi, S.A., Dehghan, M., Lotfi, A.: Generalized Euler-Lagrange equations for fractional variational problems with free boundary conditions. Comput. Math. Appl. 62, 987–995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Agrawal, O.M.P.: A general finite element formulation for fractional variational problems. J. Math. Anal. Appl. 337, 1–12 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Agrawal, O.M.P., Mehedi Hasan, M., Tangpong, X.W.: A numerical scheme for a class of parametric problem of fractional variational calculus. J. Comput. Nonlinear Dyn., 7 (2012). doi:10.1115/1.4005464

  22. Wang, D., Xiao, A.: Fractional variational integrators for fractional variational problems. Commun. Nonlinear Sci. Numer. Simul. 17, 602–610 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pooseh, S., Almeida, R., Torres, D.F.M.: Discrete direct methods in the fractional calculus of variations. Comput. Math. Appl. 66, 668–676 (2013)

    Article  MathSciNet  Google Scholar 

  24. Lotfi, A., Yousefi, S.A.: A numerical technique for solving a class of fractional variational problems. J. Comput. Appl. Math. 237, 633–643 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lotfi, A., Yousefi, S.A.: Epsilon-Ritz method for solving a class of fractional constrained optimization problems. J. Optim. Theory Appl. doi:10.1007/s10957-013-0511-5

  26. Khader, M.M., Hendy, A.S.: A numerical technique for solving fractional variational problems. Math. Meth. Appl. Sci. 36, 1281–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Almeida, R., Pooseh, S., Torres, D.F.M.: Fractional variational problems depending on indefinite integrals. Nonlinear Anal. Theory Method Appl. 75, 1009–1025 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Martins, N., Torres, D.F.M.: Generalizing the variational theory on time scales to include the delta indefinite integral. Comput. Math. Appl. 61, 2424–2435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, D., Xiao, A.: Numerical methods for fractional variational problems depending on indefinite integrals. J. Comput. Nonlinear Dyn., 8 (2013). doi:10.1115/1.4007858

  30. Atanackovic, T.M., Konjik, S., Pilipovic, S.: Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A Math. Theor. 41, 095201 (2008). doi:10.1088/1751-8113/41/9/095201

    Article  MathSciNet  MATH  Google Scholar 

  31. Almeida, R., Khosravian-Arab, H., Shamsi, M.: A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution. J. Vib. Cont. 19(14), 2177–2186 (2012)

    Article  MathSciNet  Google Scholar 

  32. Almeida, R., Torres, D.F.M.: Holderian variational problems subject to integral constraints. J. Math. Anal. Appl. 359(2), 674–681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Almeida, R., Torres, D.F.M.: Isoperimetric problems on time scales with nabla derivatives. J. Vib. Cont. 15(6), 951–958 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ferreira, R.A.C., Torres, D.F.M.: Isoperimetric problems of the calculus of variations on time scales. In: Leizarowitz, A., Mordukhovich, B.S., Shafrir, I., Zaslavski, A.J. (eds.) Nonlinear Analysis and Optimization II, in: Contemporary Mathematics, vol. 514, pp 123–131. Amer. Math. Soc., Providence (2010)

  35. Malinowska, A.B., Torres, D.F.M.: Delta-nabla isoperimetric problems. Int. J. Open Probl. Comput. Sci. Math. 3(4), 124–137 (2010)

    MathSciNet  Google Scholar 

  36. Brunt, B.V.: The calculus of variations. In: Universitext, p 2004. Springer, New York

  37. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice-Hall (1963)

  38. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, Inc., San Diego (1999)

    MATH  Google Scholar 

  40. Royden, H.L.: Real Analysis, third ed. Macmillan Publishing Company, USA (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sayevand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayevand, K., Rostami, M.R. General fractional variational problem depending on indefinite integrals. Numer Algor 72, 959–987 (2016). https://doi.org/10.1007/s11075-015-0076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0076-5

Keywords

Mathematics Subject Classification (2010)

Navigation